MGmapper: Reference based mapping and taxonomy annotation of metagenomics sequence reads - DTU Orbit (17/01/2019)

MGmapper: Reference based mapping and taxonomy annotation of metagenomics sequence reads

An increasing amount of species and gene identification studies rely on the use of next generation sequence analysis of either single isolate or metagenomics samples. Several methods are available to perform taxonomic annotations and a previous metagenomics benchmark study has shown that a vast number of false positive species annotations are a problem unless thresholds or post-processing are applied to differentiate between correct and false annotations. MGmapper is a package to process raw next generation sequence data and perform reference based sequence assignment, followed by a post-processing analysis to produce reliable taxonomy annotation at species and strain level resolution. An in-vitro bacterial mock community sample comprised of 8 genuses, 11 species and 12 strains was previously used to benchmark metagenomics classification methods. After applying a post-processing filter, we obtained 100% correct taxonomy assignments at species and genus level. A sensitivity and precision at 75% was obtained for strain level annotations. A comparison between MGmapper and Kraken at species level, shows MGmapper assigns taxonomy at species level using 84.8% of the sequence reads, compared to 70.5% for Kraken and both methods identified all species with no false positives. Extensive read count statistics are provided in plain text and excel sheets for both rejected and accepted taxonomy annotations. The use of custom databases is possible for the command-line version of MGmapper, and the complete pipeline is freely available as a bitbucket package (https://bitbucket.org/genomicepidemiology/mgmapper). A web-version (https://cge.cbs.dtu.dk/services/MGmapper) provides the basic functionality for analysis of small fastq datasets.

General information
- **State:** Published
- **Organisations:** Department of Bio and Health Informatics, Metagenomics, National Food Institute, Research group for Genomic Epidemiology, Genomic Epidemiology, Department of Systems Biology, Center for Biological Sequence Analysis
- **Contributors:** Petersen, T. N., Lukjancenko, O., Thomsen, M. C. F., Sperotto, M. M., Lund, O., Aarestrup, F. M., Sicheritz-Pontén, T.
- **Number of pages:** 13
- **Publication date:** 2017
- **Peer-reviewed:** Yes

Publication information
- **Journal:** P L o S One
- **Volume:** 12
- **Issue number:** 5
- **Article number:** e0176469
- **ISSN (Print):** 1932-6203
- **Ratings:**
 - BFI (2019): BFI-level 1
 - BFI (2018): BFI-level 1
 - BFI (2017): BFI-level 1
 - Scopus rating (2017): CiteScore 3.01 SJR 1.164 SNIP 1.111
 - Web of Science (2017): Indexed yes
 - BFI (2016): BFI-level 1
 - Scopus rating (2016): CiteScore 3.11 SJR 1.236 SNIP 1.101
 - Web of Science (2016): Indexed yes
 - BFI (2015): BFI-level 1
 - Scopus rating (2015): CiteScore 3.32 SJR 1.427 SNIP 1.136
 - Web of Science (2015): Indexed yes
 - BFI (2014): BFI-level 1
 - Scopus rating (2014): CiteScore 3.54 SJR 1.559 SNIP 1.148
 - Web of Science (2014): Indexed yes
 - BFI (2013): BFI-level 1
 - Scopus rating (2013): CiteScore 3.94 SJR 1.772 SNIP 1.153
 - ISI indexed (2013): ISI indexed yes
 - Web of Science (2013): Indexed yes
 - BFI (2012): BFI-level 1
 - Scopus rating (2012): CiteScore 4.15 SJR 1.982 SNIP 1.156
 - Web of Science (2012): Impact factor 3.73