Method for Determination of Neptunium in Large-Sized Urine Samples Using Manganese Dioxide Coprecipitation and 242Pu as Yield Tracer

A novel method for bioassay of large volumes of human urine samples using manganese dioxide coprecipitation for preconcentration was developed for rapid determination of 237Np. 242Pu was utilized as a nonisotopic tracer to monitor the chemical yield of 237Np. A sequential injection extraction chromatographic (SI-EC) system coupled with inductively coupled plasma mass spectrometry (ICPMS) was exploited to facilitate the rapid column separation and quantification. The analytical results demonstrated satisfactory performance of the MnO$_2$ coprecipitation as indicated by the high chemical yields close to 100% and high separation capacity of processing up to 5 L of human urine samples. The MnO$_2$ coprecipitation process is simple and straightforward in which a batch (8–12) of samples can be pretreated within 4 h (i.e., <0.5 h/sample). In connection with the automated column separation and ICPMS quantification, which takes less than 1.5 h in total, the overall analytical time was on average less than 2 h for each sample. The high effectiveness and sample throughput make the developed method well suited for urine bioassay of 237Np in routine monitoring of occupationally internal radiation exposure and rapid analysis of neptunium contamination level for emergency preparedness.

General information
State: Published
Organisations: Center for Nuclear Technologies, Radioecology and Tracer Studies
Contributors: Qiao, J., Hou, X., Roos, P.
Pages: 1889-1895
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Analytical Chemistry
Volume: 85
Issue number: 3
ISSN (Print): 0003-2700
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 6.24
Web of Science (2017): Impact factor 6.042
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 6.08
Web of Science (2016): Impact factor 6.32
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 6
Web of Science (2015): Impact factor 5.886
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.79
Web of Science (2014): Impact factor 5.636
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 6.01
Web of Science (2013): Impact factor 5.825
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 5.8
Web of Science (2012): Impact factor 5.695
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 5.86
Web of Science (2011): Impact factor 5.856
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Web of Science (2010): Impact factor 5.874
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Web of Science (2008): Indexed yes
Web of Science (2007): Indexed yes
Web of Science (2006): Indexed yes
Web of Science (2005): Indexed yes
Web of Science (2004): Indexed yes
Web of Science (2003): Indexed yes
Web of Science (2002): Indexed yes
Web of Science (2000): Indexed yes
Original language: English
DOIs:
10.1021/ac303300v
Source: dtu
Source-ID: n:oai:DTIC-ART:pubmed/379565394::25988
Research output: Research - peer-review \ Journal article – Annual report year: 2013