Metallothionein Zn(2+)- and Cu(2+)-clusters from first-principles calculations.

Metallothionein Zn(2+)- and Cu(2+)-clusters from first-principles calculations.
Detailed electronic structures of Zn(ii) and Cu(ii) clusters from metallothioneins (MT) have been obtained using density functional theory (DFT), in order to investigate how oxidative stress-caused Cu(ii) intermediates affect Zn-binding to MT and cooperatively lead to Cu(i)MT. The inferred accuracy is ~0.02-0.03 Å for metal-thiolate bond lengths for the models that are the most realistic MT models so far studied by DFT. We find terminal Zn-S and Cu-S bond lengths of 2.35-2.38 Å and 2.30-2.34 Å, whereas bridging M-S bonds are 0.05-0.11 Å longer. This electronic effect is also reflected in changes in electron density on bridging sulfurs. Various imposed backbone constraints quantify the sensitivity of cluster electronic structure towards protein conformational changes. The large negative charge densities of the clusters are central to MT function, and the smaller β-clusters are more prone to modification. Oxidative stress-associated Cu(ii) binding weakens the Zn-S bonds and is thus likely to impair the Zn(ii) transfer function of MTs, providing a mechanism for cooperative Cu(ii) binding leading to loss of Zn(ii) and dysfunctional Cu(i)MT clusters.

General information
State: Published
Organisations: Biophysics and Fluids, Department of Physics, Department of Chemistry, Physical and Biophysical Chemistry
Contributors: Greisen, P. J., Jespersen, J. B., Kepp, K. P.
Pages: 2247-2256
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Dalton Transactions (Print Edition)
Volume: 41
Issue number: 8
ISSN (Print): 1477-9226
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.93 SJR 1.306 SNIP 0.904
Web of Science (2017): Impact factor 4.099
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.85 SJR 1.229 SNIP 0.918
Web of Science (2016): Impact factor 4.029
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.1 SJR 1.302 SNIP 1.006
Web of Science (2015): Impact factor 4.177
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.06 SJR 1.389 SNIP 1.064
Web of Science (2014): Impact factor 4.197
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.07 SJR 1.441 SNIP 1.08
Web of Science (2013): Impact factor 4.097
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.79 SJR 1.364 SNIP 0.865
Web of Science (2012): Impact factor 3.806
ISI indexed (2012): ISI indexed yes