Metagenomic Analysis of Therapeutic PYO Phage Cocktails from 1997 to 2014

Phage therapy has regained interest in recent years due to the alarming spread of antibiotic resistance. Whilst phage cocktails are commonly sold in pharmacies in countries such as Georgia and Russia, this is not the case in western countries due to western regulatory agencies requiring a thorough characterization of the drug. Here, DNA sequencing of constituent biological entities constitutes a first step. The pyophage (PYO) cocktail is one of the main commercial products of the Georgian Eliava Institute of Bacteriophage, Microbiology and Virology and is used to cure skin infections. Since its first production in the 1930s, the composition of the cocktail has been periodically modified to add phages effective against emerging pathogenic strains. In this paper, we compared the composition of three PYO cocktails from 1997 (PYO97), 2000 (PYO2000) and 2014 (PYO2014). Based on next generation sequencing, de novo assembly and binning of contigs into draft genomes based on tetranucleotide distance, thirty and twenty-nine phage draft genomes were predicted in PYO97 and PYO2014, respectively. Of these, thirteen and fifteen shared high similarity to known phages. Eleven draft genomes were found to be common in the two cocktails. One of these showed no similarity to publicly available phage genomes. Representatives of phages targeting E. faecalis, E. faecium, E. coli, Proteus, P. aeruginosa and S. aureus were found in both cocktails. Finally, we estimated larger overlap of the PYO2000 cocktail to PYO97 compared to PYO2014.

Using next generation sequencing and metagenomics analysis, we were able to characterize and compare the content of PYO cocktails separated by 17 years in time. Even though the cocktail composition is upgraded every six months, we found it to remain relatively stable over the years.

General information
State: Published
Organisations: Department of Bio and Health Informatics, Immunoinformatics and Machine Learning, Department of Biotechnology and Biomedicine, Metabolic Signaling and Regulation, GoSeqIt ApS
Contributors: Villarroel, J., Larsen, M. V., Kilstup, M., Nielsen, M.
Number of pages: 22
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Viruses
Volume: 9
Issue number: 11
Article number: 328
ISSN (Print): 1999-4915
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 3.88 SJR 1.805 SNIP 1.13
Web of Science (2017): Impact factor 3.761
Scopus rating (2016): CiteScore 3.6 SJR 1.747 SNIP 1.02
Web of Science (2016): Impact factor 3.465
Scopus rating (2015): CiteScore 3.74 SJR 1.832 SNIP 1.034
Web of Science (2015): Impact factor 3.042
Scopus rating (2014): CiteScore 3.8 SJR 1.906 SNIP 1.098
Web of Science (2014): Impact factor 3.353
Scopus rating (2013): CiteScore 3.41 SJR 1.642 SNIP 0.979
Web of Science (2013): Impact factor 3.279
Scopus rating (2012): CiteScore 2.67 SJR 1.152 SNIP 0.686
Web of Science (2012): Impact factor 2.509
Scopus rating (2011): CiteScore 1.63 SJR 0.72 SNIP 0.439
Web of Science (2011): Impact factor 1.5
Scopus rating (2010): SJR 0.446 SNIP 0.21
Web of Science (2010): Impact factor 1
Original language: English
Keywords: PYO phage cocktail, Human phage therapy, Metagenomics
Electronic versions:
viruses_09_00328.pdf