Metabolite profiling of microfluidic cell culture conditions for droplet based screening

Metabolite profiling of microfluidic cell culture conditions for droplet based screening

We investigate the impact of droplet culture conditions on cell metabolic state by determining key metabolite concentrations in *S. cerevisiae* cultures in different microfluidic droplet culture formats. Control of culture conditions is critical for single cell/clone screening in droplets, such as directed evolution of yeast, as cell metabolic state directly affects production yields from cell factories. Here, we analyze glucose, pyruvate, ethanol, and glycerol, central metabolites in yeast glucose dissimilation to establish culture formats for screening of respiring as well as fermenting yeast. Metabolite profiling provides a more nuanced estimate of cell state compared to proliferation studies alone. We show that the choice of droplet incubation format impacts cell proliferation and metabolite production. The standard syringe incubation of droplets exhibited metabolite profiles similar to oxygen limited cultures, whereas the metabolite profiles of cells cultured in the alternative wide tube droplet incubation format resemble those from aerobic culture. Furthermore, we demonstrate retained droplet stability and size in the new better oxygenated droplet incubation format.

General information

State: Published
Organisations: High Throughput Molecular Bioscience, KTH - Royal Institute of Technology
Contributors: Björk, S. M., Sjöström, S. L., Svahn, H. A., Jönsson, H.
Number of pages: 10
Publication date: 2015
Peer-reviewed: Yes

Publication information

Journal: Biomicrofluidics
Volume: 9
Issue number: 4
Article number: 044128
ISSN (Print): 1932-1058
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.2 SJR 0.592 SNIP 0.655
Web of Science (2017): Impact factor 2.571
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.55 SJR 0.831 SNIP 0.841
Web of Science (2016): Impact factor 2.535
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.49 SJR 0.855 SNIP 0.888
Web of Science (2015): Impact factor 2.708
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.5 SJR 1.143 SNIP 1.011
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.98 SJR 1.165 SNIP 1.132
Web of Science (2013): Impact factor 3.771
ISI indexed (2013): ISI indexed yes
Scopus rating (2012): CiteScore 2.75 SJR 0.922 SNIP 0.976
Web of Science (2012): Impact factor 3.385
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Scopus rating (2011): CiteScore 3.23 SJR 0.905 SNIP 1.159
Web of Science (2011): Impact factor 3.366
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes