Metabolic engineering of antibiotic factories: New tools for antibiotic production in actinomycetes - DTU Orbit (29/10/2018)

Metabolic engineering of antibiotic factories: New tools for antibiotic production in actinomycetes

Actinomycetes are excellent sources for novel bioactive compounds, which serve as potential drug candidates for antibiotics development. While industrial efforts to find and develop novel antimicrobials have been severely reduced during the past two decades, the increasing threat of multidrug-resistant pathogens and the development of new technologies to find and produce such compounds have again attracted interest in this field. Based on improvements in whole-genome sequencing, novel methods have been developed to identify the secondary metabolite biosynthetic gene clusters by genome mining, to clone them, and to express them in heterologous hosts in much higher throughput than before. These technologies now enable metabolic engineering approaches to optimize production yields and to directly manipulate the pathways to generate modified products.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, New Bioactive Compounds
Number of pages: 12
Pages: 15-26
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Trends in Biotechnology
Volume: 33
Issue number: 1
ISSN (Print): 0167-7799
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 9.69 SJR 3.524 SNIP 2.682
Web of Science (2017): Impact factor 13.578
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 9.97 SJR 4.203 SNIP 3.149
Web of Science (2016): Impact factor 11.126
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 9.72 SJR 4.076 SNIP 3.375
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 10.31 SJR 4.402 SNIP 3.463
Web of Science (2014): Impact factor 11.958
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 10.5 SJR 3.804 SNIP 3.126
Web of Science (2013): Impact factor 10.04
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 9.77 SJR 3.39 SNIP 3.059
Web of Science (2012): Impact factor 9.66
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 9.82 SJR 3.36 SNIP 3.019
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 3.084 SNIP 2.713
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.782 SNIP 2.708
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.674 SNIP 2.183
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.392 SNIP 2.384
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 2.176 SNIP 2.19
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.941 SNIP 2.11
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.824 SNIP 1.765
Scopus rating (2003): SJR 1.58 SNIP 2.099
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.722 SNIP 2.026
Scopus rating (2001): SJR 2.068 SNIP 2.318
Scopus rating (2000): SJR 2.028 SNIP 2.219
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 2.106 SNIP 2.071
Original language: English
Keywords: Actinomycetes, Antibiotics, Metabolic engineering, Secondary metabolites
DOIs: 10.1016/j.tibtech.2014.10.009
Source: FindIt
Source-ID: 273388671
Research output: Research - peer-review ; Journal article – Annual report year: 2015