Large scale applications of behaviorally realistic transport models pose several challenges to transport modelers on both the demand and the supply sides. On the supply side, path-based solutions to the user assignment equilibrium problem help modelers in enhancing the route choice behavior modeling, but require them to generate choice sets by selecting a path generation technique and its parameters according to personal judgments. This paper proposes a methodology and an experimental setting to provide general indications about objective judgments for an effective route choice set generation. Initially, path generation techniques are implemented within a synthetic network to generate possible subjective choice sets considered by travelers. Next, 'true model estimates' and 'postulated predicted routes' are assumed from the simulation of a route choice model. Then, objective choice sets are applied for model estimation and results are compared to the 'true model estimates'. Last, predictions from the simulation of models estimated with objective choice sets are compared to the 'postulated predicted routes'. A meta-analytical approach allows synthesizing the effect of judgments for the implementation of path generation techniques, since a large number of models generate a large amount of results that are otherwise difficult to summarize and to process. Meta-analysis estimates suggest that transport modelers should implement stochastic path generation techniques with average variance of its distribution parameters and correction for unequal sampling probabilities of the alternative routes in order to obtain satisfactory results in terms of coverage of ‘postulated chosen routes’, reproduction of ‘true model estimates’ and prediction of ‘postulated predicted routes’.

General information
State: Published
Organisations: Department of Transport, Traffic modelling and planning
Contributors: Prato, C. G.
Pages: 286-298
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Transport
Volume: 27
Issue number: 3
ISSN (Print): 1648-4142
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.26 SJR 0.402 SNIP 0.953
Web of Science (2017): Impact factor 1.267
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.18 SJR 0.382 SNIP 0.983
Web of Science (2016): Impact factor 1.163
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.77 SJR 0.371 SNIP 0.64
Web of Science (2015): Impact factor 0.594
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.91 SJR 0.327 SNIP 0.984
Web of Science (2014): Impact factor 0.553
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.82 SJR 0.383 SNIP 0.653
Web of Science (2013): Impact factor 0.529
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.06 SJR 0.427 SNIP 0.697
Web of Science (2012): Impact factor 1.081
ISI indexed (2012): ISI indexed no