Mesoporous platinum nickel thin films with double gyroid morphology for the oxygen reduction reaction - DTU Orbit (22/12/2018)

Mesoporous platinum nickel thin films with double gyroid morphology for the oxygen reduction reaction

Improving both the activity and stability of the cathode catalyst in platinum-based polymer electrolyte fuel cells is a key technical challenge for next-generation sustainable-energy conversion technologies. Here, we synthesize a high surface area supported meso-structured Pt₆Ni alloy thin film with a double gyroid morphology that both exhibits high activity and stability for the oxygen reduction reaction.

General information
State: Published
Organisations: SLAC National Accelerator Laboratory, Stanford University
Contributors: Kibsgaard, J., Jackson, A., Jaramillo, T. F.
Number of pages: 6
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Nano Energy
ISSN (Print): 2211-2855
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 13.08 SJR 5.185 SNIP 1.905
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 12.26 SJR 4.745 SNIP 1.942
Web of Science (2016): Impact factor 12.343
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 11.71 SJR 3.921 SNIP 2.203
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 9.74 SJR 3.558 SNIP 2.323
Web of Science (2014): Impact factor 10.325
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 7.76 SJR 3.156 SNIP 2.205
Web of Science (2013): Impact factor 10.211
Original language: English
Keywords: Double gyroid, Fuel cell, Mesoporous, Nickel, Oxygen reduction, Platinum
DOIs:
10.1016/j.nanoen.2016.05.005
Source: FindIt
Source-ID: 2304320729
Research output: Research - peer-review › Journal article – Annual report year: 2016