Mechanical properties of chemically bonded sand core materials dipped in sol-gel coating impregnated with filter - DTU Orbit (18/12/2018)

Mechanical properties of chemically bonded sand core materials dipped in sol-gel coating impregnated with filter: novel approach to improve casting quality

A novel sol-gel coating impregnated with filter dust was applied on chemically bonded sand core materials by dipping. After curing, the strengths of the core materials were measured under uniaxial loading using a new strength testing machine (STM). The STM presents the loading history as a force-displacement curve from which the mechanical properties of the materials are deduced. The fracture surfaces were examined using a stereomicroscope and a scanning electron microscope. From the results, the strengths of the core materials were slightly reduced by the coating in tensile and flexural modes, while the strengths were increased under compression. The mode of fracture of the chemically bonded sand core materials was observed to be intergranular through the binder. The stiffness of the chemically bonded sand core materials was determined. For better understanding of the mechanical properties of the chemically bonded sand core materials, a combination of flexural and compression tests is suggested for improving the casting quality. © 2012 W. S. Maney & Son Ltd.

General information
State: Published
Organisations: Department of Mechanical Engineering, Manufacturing Engineering
Contributors: Nwaogu, U. C., Tiedje, N. S.
Pages: 307-317
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: International Journal of Cast Metals Research
Volume: 25
Issue number: 5
ISSN (Print): 1364-0461
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.79 SJR 0.387 SNIP 0.671
Web of Science (2017): Impact factor 0.643
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.74 SJR 0.382 SNIP 0.857
Web of Science (2016): Impact factor 0.771
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.65 SJR 0.325 SNIP 0.597
Web of Science (2015): Impact factor 0.5
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.73 SJR 0.425 SNIP 0.846
Web of Science (2014): Impact factor 0.48
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.67 SJR 0.5 SNIP 0.96
Web of Science (2013): Impact factor 0.509
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.52 SJR 0.374 SNIP 0.714
Web of Science (2012): Impact factor 0.364
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.75 SJR 0.576 SNIP 0.996
Web of Science (2011): Impact factor 0.52