Measurements of Electric Performance and Impedance of a 75 Ah NMC Lithium Battery Module - DTU Orbit (05/12/2018)

Measurements of Electric Performance and Impedance of a 75 Ah NMC Lithium Battery Module

Detailed characterization of battery modules is necessary to construct reliable models that incorporate performance related aspects of the modules such as thermodynamics, electrochemical reaction kinetics and degradation mechanisms. Charge-discharge curves, temperature and battery impedance measurements can provide information about these aspects. Charge-discharge curves can be used to measure the battery open circuit voltage and the internal resistance. Temperature measurements provide information about the thermodynamic reactions and impedance spectra yield detailed information about the reaction kinetics. In this paper we present the measurement methods used to examine the internal resistance, the capacity and the impedance of a 75 Ah NMC battery module.

In order to measure the impedance of the battery module and of the individual cells in the module, we combine the single sine technique and the Laplace transformed excitation signal technique which each have pros and cons. By combining the two impedance measurement techniques we are able to reduce the measurement time by a factor of 20 relative to ordinary single-sine measurements.

Further we use the impedance measurements to calculate the overvoltage as a function of state of charge and the difference between charging overvoltage and discharging overvoltage and compare it with measurements.

©2012 The Electrochemical Society

General information
State: Published
Organisations: Department of Energy Conversion and Storage, Applied Electrochemistry, Electrofunctional materials
Contributors: Jensen, S. H., Engelbrecht, K.
Pages: A791-A797
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Journal of The Electrochemical Society
Volume: 159
Issue number: 6
ISSN (Print): 0013-4651
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.48 SJR 1.267 SNIP 1.009
Web of Science (2017): Impact factor 3.662
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.97 SJR 1.222 SNIP 0.963
Web of Science (2016): Impact factor 3.259
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.17 SJR 1.115 SNIP 1.066
Web of Science (2015): Impact factor 3.014
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.36 SJR 1.213 SNIP 1.25
Web of Science (2014): Impact factor 3.266
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.92 SJR 1.169 SNIP 1.309
Web of Science (2013): Impact factor 2.859
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.61 SJR 1.329 SNIP 1.281
Web of Science (2012): Impact factor 2.588
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.74 SJR 1.331 SNIP 1.335
Web of Science (2011): Impact factor 2.59
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.418 SNIP 1.304
Web of Science (2010): Impact factor 2.427
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.442 SNIP 1.27
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.595 SNIP 1.41
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.569 SNIP 1.322
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.608 SNIP 1.535
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.523 SNIP 1.481
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.712 SNIP 1.7
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.971 SNIP 1.677
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.036 SNIP 1.618
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.663 SNIP 1.729
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.632 SNIP 1.7
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.6 SNIP 1.846

Original language: English
Electronic versions:
Measurements_of_Electric_Performance.pdf
DOIs:
10.1149/2.088206jes

Bibliographical note
Copyright The Electrochemical Society, Inc. [2012]. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS).
Source: dtu
Source-ID: u::3623
Research output: Research - peer-review › Journal article – Annual report year: 2012