About two decades ago, Tsfasman and Boguslavsky conjectured a formula for the maximum number of common zeros that r linearly independent homogeneous polynomials of degree d in $m + 1$ variables with coefficients in a finite field with q elements can have in the corresponding m-dimensional projective space over that finite field. Recently, it has been shown by Datta and Ghorpade that this conjecture is valid if r is at most $m + 1$ and can be invalid otherwise. Moreover a new conjecture was proposed for many values of r beyond $m + 1$. In this paper, we prove that this new conjecture holds true for several values of r. In particular, this settles the new conjecture completely when $d = 3$. Our result also includes the positive result of Datta and Ghorpade as a special case. Further, we also determine the maximum number of zeros in certain cases not covered by the earlier conjectures and results, namely, the case of $d = q - 1$ and of $d = q$.

General information

State: Published
Organisations: Department of Applied Mathematics and Computer Science, Mathematics
Contributors: Beelen, P., Datta, M., Ghorpade, S. R.
Number of pages: 13
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Proceedings of the American Mathematical Society
ISSN (Print): 0002-9939
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.74 SJR 1.183 SNIP 1.017
Web of Science (2017): Impact factor 0.707
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.68 SJR 1.176 SNIP 0.966
Web of Science (2016): Impact factor 0.679
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.68 SJR 1.099 SNIP 1.058
Web of Science (2015): Impact factor 0.7
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.71 SJR 1.282 SNIP 1.092
Web of Science (2014): Impact factor 0.681
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.71 SJR 1.217 SNIP 1.115
Web of Science (2013): Impact factor 0.627
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.64 SJR 1.108 SNIP 1.055
Web of Science (2012): Impact factor 0.609
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.63 SJR 1.185 SNIP 1.069
Web of Science (2011): Impact factor 0.611
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.166 SNIP 0.961
Web of Science (2010): Impact factor 0.601
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.114 SNIP 0.984
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.174 SNIP 1.152
Scopus rating (2007): SJR 0.932 SNIP 1.088
Web of Science (2007): Indexed yes
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.025 SNIP 1.042
Scopus rating (2004): SJR 0.986 SNIP 0.941
Scopus rating (2003): SJR 0.925 SNIP 0.921
Scopus rating (2002): SJR 0.96 SNIP 1.028
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.943 SNIP 0.949
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.026 SNIP 0.988
Scopus rating (1999): SJR 1.004 SNIP 0.926
Original language: English
Electronic versions:
BDGarticle_Copy.pdf
DOI:
10.1090/proc/13863
Source: PublicationPreSubmission
Source-ID: 140170532
Research output: Research - peer-review › Journal article – Annual report year: 2017