Manipulation and Motion of Organelles and Single Molecules in Living Cells

The biomolecule is among the most important building blocks of biological systems, and a full understanding of its function forms the scaffold for describing the mechanisms of higher order structures as organelles and cells. Force is a fundamental regulatory mechanism of biomolecular interactions driving many cellular processes. The forces on a molecular scale are exactly in the range that can be manipulated and probed with single molecule force spectroscopy. The natural environment of a biomolecule is inside a living cell, hence, this is the most relevant environment for probing their function. In vivo studies are, however, challenged by the complexity of the cell. In this review, we start with presenting relevant theoretical tools for analyzing single molecule data obtained in intracellular environments followed by a description of state-of-the art visualization techniques. The most commonly used force spectroscopy techniques, namely optical tweezers, magnetic tweezers, and atomic force microscopy, are described in detail, and their strength and limitations related to in vivo experiments are discussed. Finally, recent exciting discoveries within the field of in vivo manipulation and dynamics of single molecule and organelles are reviewed.

General information
Publication status: Published
Organisations: Biophysics and Fluids, Department of Physics, University of Copenhagen, University of Potsdam
Contributors: Norregaard, K., Metzler, R., Ritter, C. M., Berg-Sørensen, K., Oddershede, L. B.
Number of pages: 34
Pages: 4342-4375
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Chemical Reviews
Volume: 117
Issue number: 5
ISSN (Print): 0009-2665
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 51.08 SJR 23.414 SNIP 11.97
Web of Science (2017): Impact factor 52.613
Web of Science (2017): Indexed yes
Original language: English
Electronic versions:
Untitled.pdf
DOIs:
10.1021/acs.chemrev.6b00638

Bibliographical note
This is an open access article published under an ACS AuthorChoice License
Source: FindIt
Source-ID: 2352219411
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review