Manganese-Catalyzed Cross-Coupling of Aryl Halides and Grignard Reagents by a Radical Mechanism - DTU Orbit (19/03/2018)

Manganese-Catalyzed Cross-Coupling of Aryl Halides and Grignard Reagents by a Radical Mechanism

The substrate scope and the mechanism have been investigated for the MnCl₂-catalyzed cross-coupling reaction between aryl halides and Grignard reagents. The transformation proceeds rapidly and in good yield when the aryl halide component is an aryl chloride containing a cyano or an ester group in the para position or a cyano group in the ortho position. A range of other substituents gave no conversion of the aryl halide or led to the formation of side products. A broader scope was observed for the Grignard reagents, where a variety of alkyl- and arylmagnesium chlorides participated in the coupling. Two radical-clock experiments were carried out, and in both cases an intermediate aryl radical was successfully trapped. The cross-coupling reaction is therefore believed to proceed by an SRN_1 mechanism, with a triorganomanganate complex serving as the most likely nucleophile and single-electron donor. Other mechanistic scenarios were excluded based on the substrate scope of the aryl halide.

General information

State: Published
Organisations: Department of Chemistry, Organic Chemistry, Risø National Laboratory for Sustainable Energy, University of Gothenburg
Authors: Antonacci, G. (Intern), Ahlburg, A. (Intern), Fristrup, P. (Intern), Norrby, P. (Ekstern), Madsen, R. (Intern)
Pages: 4758-4764
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information

Volume: 2017
Issue number: 32
ISSN (Print): 1434-193X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.74 SJR 1.133 SNIP 0.653
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.198 SNIP 0.758 CiteScore 2.88
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.181 SNIP 0.767 CiteScore 2.96
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.292 SNIP 0.796 CiteScore 2.96
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.471 SNIP 0.811 CiteScore 2.93
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 1.536 SNIP 0.857 CiteScore 3.2
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.572 SNIP 0.785
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.497 SNIP 0.778
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.652 SNIP 0.759
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.711 SNIP 0.84
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.505 SNIP 0.849
Scopus rating (2005): SJR 1.246 SNIP 0.763
Scopus rating (2004): SJR 1.2 SNIP 0.81
Scopus rating (2003): SJR 1.19 SNIP 0.802
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.382 SNIP 0.829
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.159 SNIP 0.816
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.192 SNIP 1.048
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.877 SNIP 0.976
Original language: English
Cross-coupling, Grignard reagents, Manganese, Radical reactions, Reaction mechanisms, Earth-abundant metals
DOIs:
10.1002/ejoc.201700981
Source: FindIt
Source-ID: 2373535947
Publication: Research - peer-review › Journal article – Annual report year: 2017