Making touch choices: Picking the appropriate conservation decision-making tool - DTU Orbit (20/12/2018)

Making touch choices: Picking the appropriate conservation decision-making tool

Conservation practitioners face complex challenges due to resource limitations, biological and socioeconomic trade-offs, involvement of diverse interest groups, and data deficiencies. To help address these challenges, there are a growing number of frameworks for systematic decision making. Three prominent frameworks are structured decision making, systematic conservation prioritization, and systematic reviews. These frameworks have numerous conceptual linkages, and offer rigorous and transparent solutions to conservation problems. However, they differ in their assumptions and applicability. Here, we provide guidance on how to choose among these frameworks for solving conservation problems, and how to identify less rigorous techniques when time or data availability limit options. Each framework emphasizes the need for proper problem consideration and formulation, and includes steps for monitoring and evaluation. We recommend clear and documented problem formulation, adopting structured decision-making processes, and archiving results in a global database to support conservation professionals in making evidence-based decisions in the future.

General information
State: Published
Organisations: Carleton University, University of Ottawa
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Conservation Letters
ISSN (Print): 1755-263X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 6.17 SJR 3.828 SNIP 2.18
Web of Science (2017): Impact factor 7.279
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 5.14 SJR 3.064 SNIP 1.798
Web of Science (2016): Impact factor 7.02
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 5.62 SJR 3.511 SNIP 1.984
Web of Science (2015): Impact factor 7.126
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.99 SJR 3.177 SNIP 1.873
Web of Science (2014): Impact factor 7.241
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.47 SJR 2.768 SNIP 1.648
Web of Science (2013): Impact factor 5.032
ISI indexed (2013): ISI indexed yes
Scopus rating (2012): CiteScore 4.24 SJR 2.744 SNIP 1.599
Web of Science (2012): Impact factor 4.356
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Scopus rating (2011): CiteScore 3.46 SJR 2.847 SNIP 1.411
Web of Science (2011): Impact factor 4.082
ISI indexed (2011): ISI indexed no
Scopus rating (2010): SJR 2.541 SNIP 2.61
Web of Science (2010): Impact factor 4.694
Scopus rating (2009): SJR 1.343 SNIP 2.081
Web of Science (2009): Indexed yes