Make to stock and mix to order: Choosing intermediate products in the food-processing industry

In contrast to discrete manufacturers, food-processing companies can sometimes produce the same end products in different ways: either mix first and then process, or process first and mix later. Moreover, a final product can be mixed from different raw materials or intermediates. That adds a new dimension to postponement and decoupling point theory as choices have to be made not only with regard to where to locate inventory, but also which products to store. That aspect has not been covered so far. This paper explores this problem for a typical two-stage food production situation in a flour mill. The number and composition of intermediate products in the decoupling point is determined using a stepwise solution approach supported by mathematical programming models. The procedure facilitates decision-making for the management of the mill regarding how many and what intermediates to store. Extensions of the models presented might be helpful to solve related problems such as determining the number of intermediate storage tanks required.

General information
State: Published
Organisations: Operations Management, Department of Management Engineering, University of Groningen
Contributors: Akkerman, R., van der Meer, D., van Donk, D. P.
Pages: 3475-3492
Publication date: 2010
Peer-reviewed: Yes

Publication information
Journal: International Journal of Production Research
Volume: 48
Issue number: 12
ISSN (Print): 0020-7543
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.9 SJR 1.432 SNIP 1.483
Web of Science (2017): Impact factor 2.623
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.67 SJR 1.435 SNIP 1.413
Web of Science (2016): Impact factor 2.325
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.29 SJR 1.306 SNIP 1.317
Web of Science (2015): Impact factor 1.693
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.15 SJR 1.222 SNIP 1.33
Web of Science (2014): Impact factor 1.477
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.09 SJR 1.2 SNIP 1.53
Web of Science (2013): Impact factor 1.323
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.93 SJR 1.238 SNIP 1.558
Web of Science (2012): Impact factor 1.46
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.69 SJR 1.138 SNIP 1.392
Web of Science (2011): Impact factor 1.115
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.889 SNIP 1.119
Web of Science (2010): Impact factor 1.033