Magnetic flux lines in type-II superconductors and the 'hairy ball' theorem

Publication: Research - peer-reviewJournal article – Annual report year: 2010

View graph of relations

Many prominent phenomena originate from geometrical effects rather than from local physics. For example, the 'hairy ball' (HB) theorem asserts that a hairy sphere cannot be combed without introducing at least one singularity, and is fulfilled by the atmospheric circulation with the existence of stratospheric polar vortices and the fact that there is always at least one place on Earth where the horizontal wind is still. In this study, we examine the consequences of the HB theorem for the lattice of flux lines that form when a magnetic field is applied to a type-II superconducting crystal. We find that discontinuities must exist in lattice shape as a function of field direction relative to the crystal. Extraordinary, 'unconventional' flux line lattice shapes that spontaneously break the underlying crystal symmetry are thus remarkably likely across all type-II superconductors, both conventional and unconventional.
Original languageEnglish
JournalNature Communications
Publication date2010
Volume1
Pages45
ISSN2041-1723
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 5

Keywords

  • Materials and energy storage, Superconducting materials
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5628532