Magnetic field dependence of microwave radiation in intermediate-length Josephson junctions

Publication: Research - peer-reviewJournal article – Annual report year: 1984

View graph of relations

Experimental measurements of current-voltage structure and emitted X-band radiation in applied magnetic field from overlap-geometry Josephson tunnel junctions of normalized length about 2 are compared with numerical simulations obtained with the use of a perturbed sine-Gordon model. The simulations furnish the current and field dependence of the oscillation configuration, from which can be calculated average voltages, frequencies, and power spectra. Simulation and experimental results are in good agreement with regard to the lobe structure of the height of the first zero-field step and/or second Fiske step in magnetic field and the field dependence of the radiation frequency within the various lobes, including details such as hysteresis between lobes. The simulations predict an alternation of the dominant frequency component with increasing field that accounts well for the experimental observations. The usefulness and limitations of cavity-mode analyses, both singlemode and multimode, are evidenced by comparison with the simulation results.
Original languageEnglish
JournalPhysical Review B Condensed Matter
Publication date1984
Volume30
Issue5
Pages2640-2648
ISSN0163-1829
DOIs
StatePublished

Bibliographical note

Copyright (1984) by the American Physical Society.

CitationsWeb of Science® Times Cited: 13
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 6405736