Sea urchin represents one of the most valuable seafood products being harvested and explored for their edible part, the gonads or roe. This species is generally considered a sentinel organism for ecotoxicological studies being widely used in monitoring programs to assess coastal aquatic environments quality, because it is directly exposed to anthropogenic contaminants in their habitat. In this context, the aim of this study is to evaluate the concentrations of macro (Cl, K, P, Ca, S) and trace (Zn, Br, Fe, Sr, I, Se, Rb, Cu, Cr, Ni, As, iAs, Cd, Pb, Hg) elements in Paracentrotus lividus gonads from three South West Atlantic production areas subjected to distinct environmental and anthropogenic pressures. In all studied areas, the elements profile in sea urchin gonads was Cl > K > P > Ca > S > Zn > Br > Fe > Sr > I > Rb > Cu > Se > Cr > Ni, suggesting an element guide profile with special interest for sea urchin farming development. Concerning toxic elements, the profile was the following: As > Cd > Pb > Hg > iAs. The results evidenced higher levels of Pb and Hg in open areas. Distinct area characteristics and anthropogenic pressures of production areas evidence the importance of biomonitoring contaminants, particularly toxic elements. In general, the levels of these elements were below maximum levels in foodstuffs (MLs) which pose a minimal health risk to consumers.