LYRA, a webserver for lymphocyte receptor structural modeling.

The accurate structural modeling of B- and T-cell receptors is fundamental to gain a detailed insight in the mechanisms underlying immunity and in developing new drugs and therapies. The LYRA (LYmphocyte Receptor Automated modeling) web server (http://www.cbs.dtu.dk/services/LYRA/) implements a complete and automated method for building of B- and T-cell receptor structural models starting from their amino acid sequence alone. The webserver is freely available and easy to use for non-specialists. Upon submission, LYRA automatically generates alignments using ad hoc profiles, predicts the structural class of each hypervariable loop, selects the best templates in an automatic fashion, and provides within minutes a complete 3D model that can be downloaded or inspected online. Experienced users can manually select or exclude template structures according to case specific information. LYRA is based on the canonical structure method, that in the last 30 years has been successfully used to generate antibody models of high accuracy, and in our benchmarks this approach proves to achieve similarly good results on TCR modeling, with a benchmarked average RMSD accuracy of 1.29 and 1.48 Å for B- and T-cell receptors, respectively. To the best of our knowledge, LYRA is the first automated server for the prediction of TCR structure.
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 4.641 SNIP 1.557
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 4.86 SNIP 1.787
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 4.55 SNIP 2.04
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 4.992 SNIP 2.152
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 4.809 SNIP 1.971
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.108 SNIP 1.862
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.12 SNIP 1.535
Scopus rating (2001): SJR 0.131 SNIP 1.402
Scopus rating (2000): SJR 0.141 SNIP 1.672
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.149 SNIP 1.562
Original language: English
Electronic versions:
LYRA.pdf
DOIs:
10.1093/nar/gkv535

Bibliographical note
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Source: PublicationPreSubmission
Source-ID: 110922037
Publication: Research - peer-review › Journal article – Annual report year: 2015