Lower bounds on the run time of the univariate marginal distribution algorithm on OneMax - DTU Orbit (06/12/2018)

Lower bounds on the run time of the univariate marginal distribution algorithm on OneMax

The Univariate Marginal Distribution Algorithm (UMDA), a popular estimation of distribution algorithm, is studied from a run time perspective. On the classical OneMax benchmark function, a lower bound of $\Omega(\mu \sqrt{n} + n \log n)$, where μ is the population size, on its expected run time is proved. This is the first direct lower bound on the run time of the UMDA. It is stronger than the bounds that follow from general black-box complexity theory and is matched by the run time of many evolutionary algorithms. The results are obtained through advanced analyses of the stochastic change of the frequencies of bit values maintained by the algorithm, including carefully designed potential functions. These techniques may prove useful in advancing the field of run time analysis for estimation of distribution algorithms in general.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science , Algorithms and Logic , Hasso Platter Institute, Postdam
Contributors: Krejca, M. S., Witt, C.
Pages: 65-79
Publication date: 2017

Host publication information
Title of host publication: 14th ACM/SIGEVO Workshop on Foundations of Genetic Algorithms
Publisher: Association for Computing Machinery
ISBN (Print): 9781450346511
Keywords: Computer Programming, Systems Science, Estimation of distribution algorithm, Lower bound, Run time analysis, Genetic algorithms, Heuristic algorithms, Population statistics, Stochastic systems, Advanced analysis, Benchmark functions, Black-box complexity, Estimation of distribution algorithms, Lower bounds, Potential function, Run-time analysis, Univariate marginal distribution algorithms, Evolutionary algorithms
Electronic versions: p65_krejca.pdf
DOIs: 10.1145/3040718.3040724
Source: FindIt
Source-ID: 2358521856
Research output: Research - peer-review › Article in proceedings – Annual report year: 2017