This paper presents the design of a resonant converter with a switching frequency in the very high frequency range (30-300 MHz), a large step down ratio (10 times) and low output power (1 W). Several different inverters and rectifiers are analyzed and compared. The class E inverter and rectifier are selected based on complexity and efficiency estimates. Three different power stages are implemented: one with a large input inductor, one with a switch with small capacitances and one with a switch with low on resistance. The power stages are designed with the same specifications and efficiencies from 60.7 to 82.9% are achieved.