A new method for recycling ionic liquids (ILs) from a cellulose spinning process is suggested. The method involves the combination of freeze crystallization and evaporation of H$_2$O from IL + H$_2$O mixtures to recycle the ILs. Processes with EmimAc and EmimDep were used as references to develop this IL recycling method. EmimAc + 12.5 wt% H$_2$O and EmimDep + 4 wt% H$_2$O were selected for a quantitative mass and energy analysis of the cellulose spinning and IL recycling process (the maximal initial H$_2$O levels in the ILs + H$_2$O mixtures for cellulose dissolution were determined experimentally). The energy requirement for the freeze crystallization + evaporation method was compared to evaporation only for recycling of EmimAc and EmimDep. To produce 1 kg dry cellulose fiber, 45.4 MJ and 62.6 MJ are required for recycling EmimAc and EmimDep respectively by the freeze crystallization + evaporation recycling method. Using evaporation only, 66.9 MJ is required for EmimAc recycling and 99.9 MJ for EmimDep recycling per kg cellulose fiber produced. Thus, to fabricate 1 kg dry cellulose fiber using freeze crystallization + evaporation rather than evaporation, 21.5 MJ can be saved for EmimAc and 37.3 MJ for EmimDep recycling. We also show that compared to a classical Lyocell fiber production method using N-methylmorpholine-N-oxide (NMMO) as solvent, use of ILs is energy saving in itself. Hence, significantly less H$_2$O is required in the cellulose spinning process with ILs than with NMMO, and in turn less H$_2$O has to be evaporated for the solvent recycling.

General information
State: Published
Organizations: Department of Chemical and Biochemical Engineering, Center for BioProcess Engineering, CERE – Center for Energy Resources Engineering, Chinese Academy of Sciences
Contributors: Liu, Y., Meyer, A. S., Nie, Y., Zhang, S., Thomsen, K.
Pages: 493-501
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Green Chemistry
Volume: 20
Issue number: 2
ISSN (Print): 1463-9262
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 8.99 SJR 2.496 SNIP 1.847
Web of Science (2017): Impact factor 8.586
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 8.86 SJR 2.598 SNIP 2.021
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 8.21 SJR 2.452 SNIP 1.884
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 8.05 SJR 2.386 SNIP 1.989
Web of Science (2014): Impact factor 8.02
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 7.44 SJR 2.28 SNIP 1.804
Web of Science (2013): Impact factor 6.852
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 6.64 SJR 2.444 SNIP 1.701
Web of Science (2012): Impact factor 6.828