Long-Haul Dense Space Division Multiplexed Transmission over Low-Crosstalk Heterogeneous 32-Core Transmission Line Using Partial Recirculating Loop System

In this paper, we present long-haul 32-core dense space division multiplexed (DSDM) unidirectional transmission over a single-mode multicore transmission line. We developed a low-crosstalk heterogeneous 32-core fiber with a square lattice arrangement, and a novel partial recirculating loop system. The span crosstalk of the 51.4-km 32-core transmission line was less than −34.5 dB. This allowed the transmission of polarization division multiplexed 16 quadrature amplitude modulation (PDM-16QAM) signals through all 32-cores over a long distance exceeding a thousand km. We demonstrate 32-core DSDM 20 wavelength division multiplexed (WDM) PDM-16QAM transmission over 1644.8 km with a high aggregate spectral efficiency of 201.46 b/s/Hz. Additionally, we examine the effect of crosstalk on the transmission performance of each core, and show that the Q-penalty has strong correlation with inter-core crosstalk.

General information
State: Published
Organisations: Department of Photonics Engineering, High-Speed Optical Communication, Centre of Excellence for Silicon Photonics for Optical Communications, NTT Corporation, University of Southampton, Coriant R&D GmbH, Fujikura Ltd., Osaka Prefecture University, Hokkaido University
Contributors: Mizuno, T., Shibahara, K., Ye, F., Sasaki, Y., Amma, Y., Takenaga, K., Jung, Y., Pulverer, K., Ono, H., Abe, Y., Yamada, M., Saitoh, K., Matsuo, S., Aikawa, K., Bohn, M., Richardson, D. J., Miyamoto, Y., Morioka, T.
Pages: 488 - 498
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Lightwave Technology
Volume: 35
Issue number: 3
ISSN (Print): 0733-8724
Ratings:
 BFI (2018): BFI-level 2
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 2
 Scopus rating (2017): CiteScore 4.42 SJR 1.166 SNIP 1.791
 Web of Science (2017): Impact factor 3.652
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 2
 Scopus rating (2016): CiteScore 3.87 SJR 1.23 SNIP 1.819
 Web of Science (2016): Impact factor 3.671
 Web of Science (2016): Indexed yes
 BFI (2015): BFI-level 2
 Scopus rating (2015): CiteScore 4.15 SJR 1.598 SNIP 1.901
 Web of Science (2015): Impact factor 2.567
 Web of Science (2015): Indexed yes
 BFI (2014): BFI-level 2
 Scopus rating (2014): CiteScore 4.23 SJR 1.737 SNIP 2.411
 Web of Science (2014): Impact factor 2.965
 Web of Science (2014): Indexed yes
 BFI (2013): BFI-level 2
 Scopus rating (2013): CiteScore 4.03 SJR 1.622 SNIP 2.439
 Web of Science (2013): Impact factor 2.862
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
 BFI (2012): BFI-level 2
 Scopus rating (2012): CiteScore 3.21 SJR 1.886 SNIP 2.491
 Web of Science (2012): Impact factor 2.555
 ISI indexed (2012): ISI indexed yes