Loading of Drug-Polymer Matrices in Microreservoirs for Oral Drug Delivery

Loading of Drug-Polymer Matrices in Microreservoirs for Oral Drug Delivery

For major advances in microfabricated drug delivery systems (DDS), fabrication methods with high throughput using biocompatible polymers are required. Once these DDS are fabricated, loading of drug poses a significant challenge. Here, hot punching is presented as an innovative method for drug loading in microfabricated DDS. The microfabricated DDS are microcontainers fabricated in photoresist SU-8 and biopolymer poly-ε-caprolactone (PCL). Furosemide (F) drug is embedded in poly-ε-caprolactone (PCL) polymer matrix. This F-PCL drug polymer matrix is loaded in SU-8 and PLLA microcontainers using hot punching with >99% yield. Thus, it is illustrated that hot punching allows high-throughput, parallel loading of 3D polymer microcontainers with drug-polymer matrices in a single process step.

General information

State: Published
Organisations: Department of Micro- and Nanotechnology, Nanoprobes, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics
Contributors: Petersen, R. S., Keller, S. S., Boisen, A.

Number of pages: 6
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Macromolecular Materials & Engineering
Volume: 302
Issue number: 3
Article number: 1600366
ISSN (Print): 1438-7492

Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.71 SJR 0.755 SNIP 0.945
Web of Science (2017): Impact factor 2.69
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.01 SJR 0.905 SNIP 0.972
Web of Science (2016): Impact factor 2.863
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.88 SJR 0.847 SNIP 1.072
Web of Science (2015): Impact factor 2.834
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.81 SJR 1.009 SNIP 1.294
Web of Science (2014): Impact factor 2.661
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.66 SJR 0.956 SNIP 1.24
Web of Science (2013): Impact factor 2.781

ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.34 SJR 0.963 SNIP 1.181
Web of Science (2012): Impact factor 2.338
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.18 SJR 0.972 SNIP 1.058
Web of Science (2011): Impact factor 1.986
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1