Load forecasting of supermarket refrigeration - DTU Orbit (18/12/2018)

Load forecasting of supermarket refrigeration
This paper presents a novel study of models for forecasting the electrical load for supermarket refrigeration. The data used for building the models consists of load measurements, local climate measurements and weather forecasts. The load measurements are from a supermarket located in a village in Denmark. Every hour the hourly electrical load for refrigeration is forecasted for the following 42 h. The forecast models are adaptive linear time series models. The model has two regimes; one for opening hours and one for closing hours, this is modeled by a regime switching model and two different methods for predicting the regimes are tested. The dynamic relation between the weather and the load is modeled by simple transfer functions and the non-linearities are described using spline functions. The results are thoroughly evaluated and it is shown that the spline functions are suitable for handling the non-linear relations and that after applying an auto-regressive noise model the one-step ahead residuals do not contain further significant information.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Dynamical Systems, Office for Study Programmes and Student Affairs, Centre for IT-Intelligent Energy Systems in Cities, Technical University of Denmark, ENFOR A/S, Danish Technological Institute, Danfoss AS
Contributors: Rasmussen, L. B., Bacher, P., Madsen, H., Nielsen, H. A., Heerup, C., Green, T.
Pages: 32-40
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Applied Energy
Volume: 163
Issue number: Februar 2016
ISSN (Print): 0306-2619
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 8.44 SJR 3.162 SNIP 2.765
Web of Science (2017): Impact factor 7.9
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 7.78 SJR 3.011 SNIP 2.61
Web of Science (2016): Impact factor 7.182
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 6.4 SJR 2.835 SNIP 2.593
Web of Science (2015): Impact factor 5.746
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 6.93 SJR 3.158 SNIP 3.218
Web of Science (2014): Impact factor 5.613
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 6.59 SJR 3.06 SNIP 3.346
Web of Science (2013): Impact factor 5.261
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 5.69 SJR 2.778 SNIP 3.076
Web of Science (2012): Impact factor 4.781
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 5.5 SJR 2.416 SNIP 2.827
Web of Science (2011): Impact factor 5.106
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.531 SNIP 2.259
Web of Science (2010): Impact factor 3.915
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.992 SNIP 1.85
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 0.95 SNIP 1.206
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.168 SNIP 1.704
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.95 SNIP 1.277
Scopus rating (2005): SJR 1.02 SNIP 0.988
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.67 SNIP 0.844
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.713 SNIP 0.775
Scopus rating (2002): SJR 0.589 SNIP 0.779
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.368 SNIP 0.567
Scopus rating (2000): SJR 0.154 SNIP 0.498
Scopus rating (1999): SJR 0.181 SNIP 0.443
Original language: English
Keywords: Refrigeration, Load forecasting, Numerical weather predictions, Adaptive models, Base splines, Time series analysis
Electronic versions:
Artikel_v2.pdf. Embargo ended: 02/02/2018
DOIs:
10.1016/j.apenergy.2015.10.046
Source: FindIt
Source-ID: 2289207921
Research output: Research - peer-review › Journal article – Annual report year: 2015