Load alleviation potential of active flaps and individual pitch control in a full design load basis - DTU Orbit (12/12/2018)

Load alleviation potential of active flaps and individual pitch control in a full design load basis
The load alleviation potential of the Controllable Rubber Trailing Edge Flap (CRTEF) is verified on a full Design Load Basis (DLB) setup using the aeroelastic code HAWC2, and by investigating a flap configuration for the NREL 5MW Reference Wind Turbine (RWT) model. The performance of the CRTEF configuration is evaluated by comparing four setups: 1) baseline with collective pitch, 2) individual pitch control, 3) individual flap control and 4) individual flap control combined with individual pitch control. The CRTEF allows for a significant reduction of the lifetime fatigue on various load channels; the reduction for some of the extreme loads is also noticeable

General information
State: Published
Organisations: Department of Wind Energy, Aeroelastic Design
Number of pages: 7
Publication date: 2015

Host publication information
Title of host publication: Proceedings of the EWEA Annual Event and Exhibition 2015
Publisher: European Wind Energy Association (EWEA)
Keywords: CRTEF, Controllable Rubber Trailing Edge Flap, DLB, Design Load Basis, IPC, Individual Pitch Control, IFC, Individual Flap Control
Electronic versions:
Paper

Bibliographical note
Paper for poster presentation
Research output: Research - peer-review › Article in proceedings – Annual report year: 2015