List-Mode PET Motion Correction Using Markerless Head Tracking: Proof-of-Concept With Scans of Human Subject - DTU Orbit (02/12/2018)

A custom designed markerless tracking system was demonstrated to be applicable for positron emission tomography (PET) brain imaging. Precise head motion registration is crucial for accurate motion correction (MC) in PET imaging. State-of-the-art tracking systems applied with PET brain imaging rely on markers attached to the patient's head. The marker attachment is the main weakness of these systems. A healthy volunteer participating in a cigarette smoking study to image dopamine release was scanned twice for 2 h with 11C-raclopride on the high resolution research tomograph (HRRT) PET scanner. Head motion was independently measured, with a commercial marker-based device and the proposed vision-based system. A list-mode event-by-event reconstruction algorithm using the detected motion was applied. A phantom study with hand-controlled continuous random motion was obtained. Motion was time-varying with long drift motions of up to 18 mm and regular step-wise motion of 1–6 mm. The evaluated measures were significantly better for motion-corrected images compared to no MC. The demonstrated system agreed with a commercial integrated system. Motion-corrected images were improved in contrast recovery of small structures.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Image Analysis & Computer Graphics, Yale University, Siemens A/S
Pages: 200-209
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: IEEE Transactions on Medical Imaging
Volume: 32
Issue number: 2
ISSN (Print): 0278-0062
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 6.6 SJR 1.895 SNIP 2.874
Web of Science (2017): Impact factor 6.131
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.83 SJR 1.596 SNIP 2.388
Web of Science (2016): Impact factor 3.942
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.9 SJR 1.9 SNIP 2.642
Web of Science (2015): Impact factor 3.756
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.66 SJR 1.604 SNIP 2.675
Web of Science (2014): Impact factor 3.39
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 5.55 SJR 2.089 SNIP 3.215
Web of Science (2013): Impact factor 3.799
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.94 SJR 1.703 SNIP 3.244
Web of Science (2012): Impact factor 4.027
ISI indexed (2012): ISI indexed yes