Lignocellulose pretreatment severity – relating pH to biomatrix opening - DTU Orbit (27/10/2018)

Lignocellulose pretreatment severity – relating pH to biomatrix opening
In cellulose-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic feedstock is a critical prerequisite for increasing the amenability of the cellulose to enzymatic attack. Currently published pretreatment strategies span over a wide range of reaction conditions involving different pH values, temperatures, types of catalysts, and holding times. The consequences of the pretreatment on lignocellulosic biomass are described with special emphasis on the chemical alterations of the biomass during pretreatment, especially highlighting the significance of the pretreatment pH. We present a new illustration of the pretreatment effects encompassing the differential responses to the pH and temperature. A detailed evaluation of the use of severity factor calculations for pretreatment comparisons signifies that the multiple effects of different pretreatment factors on the subsequent monosaccharide yields after enzymatic hydrolysis cannot be reliably compared by a one-dimensional severity factor, even within the same type of pretreatment strategy. However, a quantitative comparison of published data for wheat straw pretreatment illustrates that there is some correlation between the hydrolysis yields (glucose, xylose) and the pretreatment pH, but no correlation with the pretreatment temperature (90–200 °C). A better recognition and understanding of the factors affecting biomatrix opening, and use of more standardized evaluation protocols, will allow for the identification of new pretreatment strategies that improve biomass utilization and permit rational enzymatic hydrolysis of the cellulose.

General information
State: Published
Organisations: Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering
Contributors: Pedersen, M., Meyer, A. S.
Pages: 739-750
Publication date: 2010
Peer-reviewed: Yes

Publication information
Journal: New Biotechnology
Volume: 27
Issue number: 6
ISSN (Print): 1871-6784
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.66 SJR 0.967 SNIP 1.14
Web of Science (2017): Impact factor 3.733
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.67 SJR 1.08 SNIP 1.262
Web of Science (2016): Impact factor 3.813
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.07 SJR 1.073 SNIP 1.055
Web of Science (2015): Impact factor 3.199
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.77 SJR 0.994 SNIP 1.237
Web of Science (2014): Impact factor 2.898
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.5 SJR 0.822 SNIP 0.966
Web of Science (2013): Impact factor 2.106
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.12 SJR 0.784 SNIP 0.85
Web of Science (2012): Impact factor 1.706
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.13 SJR 0.947 SNIP 0.955
Web of Science (2011): Impact factor 2.756
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.896 SNIP 1.027
Web of Science (2010): Impact factor 1.843
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.03 SNIP 1.408
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.945 SNIP 1.093
Scopus rating (2007): SJR 1.391 SNIP 1.318
Scopus rating (2006): SJR 0.754 SNIP 0.908
Scopus rating (2005): SJR 0.693 SNIP 1.078
Scopus rating (2004): SJR 0.728 SNIP 1.025
Scopus rating (2003): SJR 0.647 SNIP 0.927
Scopus rating (2002): SJR 1.476 SNIP 0.666
Scopus rating (2001): SJR 0.434 SNIP 0.776
Scopus rating (2000): SJR 0.193 SNIP 0.642
Scopus rating (1999): SNIP 0.616
Original language: English
DOIs: 10.1016/j.nbt.2010.05.003
Source: orbit
Source-ID: 262000
Research output: Research - peer-review > Journal article – Annual report year: 2010