Light Robotics for Nanomedicine

Research output: Research - peer-reviewPaper – Annual report year: 2018

Documents

View graph of relations

Technological developments from recent years have led to the emergence of a new field, Light Robotics1, which explores intelligent optical actuation of microfabricated structures with tailored properties. As one of the pioneers in the field, our group develops microrobots for biomedical applications and advanced light sculpting techniques for their efficient optical manipulation. Two-photon polymerization enables direct laser writing of structures with a resolution of ~200 nm, which can be further improved to ~10 nm by post-processing or additional control over the printing process. In combination with surface modification via metal deposition or chemical functionalization, such microstructures can be tailored to specific applications for biomedical research purposes, such as localized mixing in microfluidic channels2. Light sculpting using methods from the Generalized Phase Contrast (GPC) family allows precise, simultaneous control of several microstructures with six degrees of freedom. Light-controlled microrobots have already shown potential for biomedical research by e.g. local material delivery and mixing, indirect manipulation of biological samples or in situ sample characterization. Our group focuses on further improving the fabrication process by bringing the microrobots closer to the nanoscale or by integrating multiple surface chemistries providing e.g. stealth, biological targetting or drug delivery functionalities. This would expand the applications of the 3D-printed microrobots, particularly for the manipulation and characterization of biological samples, bringing them a step closer towards becoming true ”microsurgeons”.
Original languageEnglish
Publication date2018
Number of pages1
StatePublished - 2018
EventCopenhagen Nanomedicine Day 2018 - Mærsk Tower, Copenhagen, Denmark
Duration: 29 Oct 201829 Oct 2018

Conference

ConferenceCopenhagen Nanomedicine Day 2018
LocationMærsk Tower
CountryDenmark
CityCopenhagen
Period29/10/201829/10/2018
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 159258055