Licensing Foreign Technology and the Moderating Role of Local R&D Collaboration: Extending the Relational View - DTU Orbit (10/12/2018)

The relational resource-based view posits that performance differences among firms can be explained not only by the possession of internal resources but also by maintaining and developing relationships with external partners. However, studies in the extant literature usually address the separated roles of various external relationships of focal firms, but the literature has not addressed how relationships with different sets of knowledge partners are related to each other and influence focal firms' performance. Therefore, to fill this research gap, this study focuses on how technological resources acquired from one set of partners (licensing foreign technologies) may generate subsequent internal and relational rents in terms of technological innovation in the context of collaboration with an entirely different set of knowledge partners (local R&D partners). Specifically, we propose that local R&D collaborations need to be large in scale and broad in scope. The empirics are based on the analysis of a sample of 160 high-tech Chinese firms observed from 2000 to 2011. Consistent with our predictions, our findings contribute to extending the relational view by addressing the relations among the relationships of focal firms.

General information
State: Published
Organisations: Department of Management Engineering, Technology and Innovation Management
Contributors: Wang, Y., Li-Ying, J.
Number of pages: 17
Pages: 997–1013
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Journal of Product Innovation Management
Volume: 32
Issue number: 6
ISSN (Print): 0737-6782
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.86 SJR 3.043 SNIP 2.458
Web of Science (2017): Impact factor 4.305
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.12 SJR 3.271 SNIP 2.612
Web of Science (2016): Impact factor 3.759
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.29 SJR 2.392 SNIP 1.899
Web of Science (2015): Impact factor 2.086
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.72 SJR 2.139 SNIP 2.055
Web of Science (2014): Impact factor 1.696
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.89 SJR 2.146 SNIP 2.044
Web of Science (2013): Impact factor 1.379
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.93 SJR 2.594 SNIP 2.394
Web of Science (2012): Impact factor 1.572
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.08 SJR 2.405 SNIP 2.733
Web of Science (2011): Impact factor 2.109
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.035 SNIP 2.529
Web of Science (2010): Impact factor 2.079
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.386 SNIP 2.293
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.247 SNIP 2.29
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.264 SNIP 2.531
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.735 SNIP 2.063
Scopus rating (2005): SJR 1.434 SNIP 2.091
Scopus rating (2004): SJR 1.538 SNIP 2.513
Scopus rating (2003): SJR 2.229 SNIP 2.423
Scopus rating (2002): SJR 2.047 SNIP 1.519
Scopus rating (2001): SJR 1.539 SNIP 1.887
Scopus rating (2000): SJR 1.358 SNIP 1.697
Scopus rating (1999): SJR 1.443 SNIP 2.126

Original language: English

Electronic versions:
JPIM_2015_Jason_Li_Ying.pdf. Embargo ended: 01/01/2016

DOIs:
10.1111/jpim.12246

Source: PublicationPreSubmission
Source-ID: 100996336

Research output: Research - peer-review › Journal article – Annual report year: 2014