In this article we study learnability of fully observable, universally applicable action models of dynamic epistemic logic. We introduce a framework for actions seen as sets of transitions between propositional states and we relate them to their dynamic epistemic logic representations as action models. We introduce and discuss a wide range of properties of actions and action models and relate them via correspondence results. We check two basic learnability criteria for action models: finite identifiability (conclusively inferring the appropriate action model in finite time) and identifiability in the limit (inconclusive convergence to the right action model). We show that deterministic actions are finitely identifiable, while arbitrary (non-deterministic) actions require more learning power—they are identifiable in the limit. We then move on to a particular learning method, i.e. learning via update, which proceeds via restriction of a space of events within a learning-specific action model. We show how this method can be adapted to learn conditional and unconditional deterministic action models. We propose update learning mechanisms for the afore mentioned classes of actions and analyse their computational complexity. Finally, we study a parametrized learning method which makes use of the upper bound on the number of propositions relevant for a given learning scenario. We conclude with describing related work and numerous directions of further work.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Algorithms and Logic
Contributors: Bolander, T., Gierzsimczuk, N.
Pages: 337-365
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Logic and Computation
Volume: 28
Issue number: 2
ISSN (Print): 0955-792X
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 0.82 SJR 0.381 SNIP 1.135
Web of Science (2017): Impact factor 0.74
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 0.74 SJR 0.422 SNIP 0.856
Web of Science (2016): Impact factor 0.909
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 0.54 SJR 0.382 SNIP 0.727
Web of Science (2015): Impact factor 0.585
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 0.75 SJR 0.519 SNIP 0.802
Web of Science (2014): Impact factor 0.512
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 0.95 SJR 0.546 SNIP 1.138
Web of Science (2013): Impact factor 0.504
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.23 SJR 0.844 SNIP 1.788
Web of Science (2012): Impact factor 0.647
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2