Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen

Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen

The terrestrial vegetation is a source of UV radiation-induced aerobic methane (CH₄) release to the atmosphere. Hitherto pectin, a plant structural component, has been considered as the most likely precursor for this CH₄ release. However, most of the leaf pectin is situated below the surface wax layer, and UV transmittance of the cuticle differs among plant species. In some species, the cuticle effectively absorbs and/or reflects UV radiation. Thus, pectin may not necessarily contribute substantially to the UV radiation-induced CH₄ emission measured at surface level in all species. Here, we investigated the potential of the leaf surface wax itself as a source of UV radiation-induced leaf aerobic CH₄ formation. Isolated leaf surface wax emitted CH₄ at substantial rates in response to UV radiation. This discovery has implications for how the phenomenon should be scaled to global levels. In relation to this, we demonstrated that the UV radiation-induced CH₄ emission is independent of leaf area index above unity. Further, we observed that the presence of O₂ in the atmosphere was necessary for achieving the highest rates of CH₄ emission. Methane formation from leaf surface wax is supposedly a two-step process initiated by a photolytic rearrangement reaction of the major component followed by an α-cleavage of the generated ketone.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, Ecosystems Programme, CHEC Research Centre, University of Copenhagen
Contributors: Bruhn, D., Mikkelsen, T. N., Mejlhede Rolsted, M. M., Egsgaard, H., Ambus, P.
Pages: 512-516
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Plant Biology
Volume: 16
ISSN (Print): 1435-8603
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.3 SJR 0.939 SNIP 0.99
Web of Science (2017): Impact factor 2.156
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.28 SJR 1.033 SNIP 0.865
Web of Science (2016): Impact factor 2.106
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.4 SJR 1.05 SNIP 1.009
Web of Science (2015): Impact factor 2.216
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.43 SJR 1.07 SNIP 1.075
Web of Science (2014): Impact factor 2.633
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.52 SJR 0.976 SNIP 1.099
Web of Science (2013): Impact factor 2.405
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.4 SJR 1.035 SNIP 1.031
Web of Science (2012): Impact factor 2.32
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.33 SJR 1 SNIP 1.066
Web of Science (2011): Impact factor 2.395
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.889 SNIP 0.927
Web of Science (2010): Impact factor 2.409
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.098 SNIP 0.966
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.012 SNIP 0.736
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.197 SNIP 0.846
Scopus rating (2006): SJR 0.877 SNIP 0.742
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.853 SNIP 0.864
Scopus rating (2004): SJR 0.867 SNIP 0.976
Scopus rating (2003): SJR 0.71 SNIP 0.992
Scopus rating (2002): SJR 0.996 SNIP 0.971
Scopus rating (2001): SJR 0.809 SNIP 1.23
Scopus rating (2000): SJR 0.744 SNIP 0.519

Original language: English
Keywords: CH4, Leaf, Norrish, Photolysis, Surface processes, UV radiation, Vegetation

DOI: 10.1111/plb.12137
Source: PublicationPreSubmission
Source-ID: 91544674
Research output: Research - peer-review › Journal article – Annual report year: 2014