LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative - DTU Orbit (17/01/2019)

LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative

Increasing needs for decision support and advances in scientific knowledge within life cycle assessment (LCA) led to substantial efforts to provide global guidance on environmental life cycle impact assessment (LCIA) indicators under the auspices of the UNEP-SETAC Life Cycle Initiative. As part of these efforts, a dedicated task force focused on addressing several LCIA cross-cutting issues as aspects spanning several impact categories, including spatiotemporal aspects, reference states, normalization and weighting, and uncertainty assessment. Here, findings of the cross-cutting issues task force are presented along with an update of the existing UNEP-SETAC LCIA emission-to-damage framework. Specific recommendations are provided with respect to metrics for human health (Disability Adjusted Life Years, DALY) and ecosystem quality (Potentially Disappeared Fraction of species, PDF). Additionally, we stress the importance of transparent reporting of characterization models, reference states, and assumptions, in order to facilitate cross-comparison between chosen methods and indicators. We recommend developing spatially regionalized characterization models, whenever the nature of impacts shows spatial variability and related spatial data are available. Standard formats should be used for reporting spatially differentiated models, and choices regarding spatiotemporal scales should be clearly communicated. For normalization, we recommend using external normalization references. Over the next two years, the task force will continue its effort with a focus on providing guidance for LCA practitioners on how to use the UNEP-SETAC LCIA framework as well as for method developers on how to consistently extend and further improve this framework.

General information

State: Published
Organisations: Department of Management Engineering, Quantitative Sustainability Assessment, Norwegian University of Science and Technology, National Risk Management Research Laboratory, Universite du Quebec a Montreal, freeze Ltd., Swiss Federal Institute of Technology Zurich, Nobis, University of Michigan, Swiss Federal Institute of Technology Lausanne, Fraunhofer Institute for Building Physics IBP, University of Alberta, Polytechnique Montreal, National Institute of Public Health and the Environment, Leiden University, Commonwealth Scientific and Industrial Research Organisation, Irstea, European Commission - Joint Research Center, Universidade Tecnologica Federal do Parana, PRé Consultants B.V.
Pages: 957-967
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Journal of Cleaner Production
Volume: 161
ISSN (Print): 0959-6526
Ratings:
- BFI (2019): BFI-level 2
- Web of Science (2019): Indexed yes
- BFI (2018): BFI-level 2
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 2
- Scopus rating (2017): CiteScore 5.79 SJR 1.467 SNIP 2.194
- Web of Science (2017): Impact factor 5.651
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 2
- Scopus rating (2016): CiteScore 5.83 SJR 1.659 SNIP 2.502
- Web of Science (2016): Impact factor 5.715
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 2
- Scopus rating (2015): CiteScore 5.57 SJR 1.635 SNIP 2.375
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 2
- Scopus rating (2014): CiteScore 4.6 SJR 1.665 SNIP 2.481
- Web of Science (2014): Impact factor 3.844
- Web of Science (2014): Indexed yes