This chapter focuses on the application of Life Cycle Assessment (LCA) to evaluate the environmental performance of chemicals as well as of products and processes where chemicals play a key role. The life cycle stages of chemical products, such as pharmaceuticals drugs or plant protection products, are discussed and differentiated into extraction of abiotic and biotic raw materials, chemical synthesis and processing, material processing, product manufacturing, professional or consumer product use, and finally end-of-life. LCA is discussed in relation to other chemicals management frameworks and concepts including risk assessment, green and sustainable chemistry, and chemical alternatives assessment. A large number of LCA studies focus on contrasting different feedstocks or chemical synthesis processes, thereby often conducting a cradle to (factory) gate assessment. While typically a large share of potential environmental impacts occurs during the early product life cycle stages, potential impacts related to chemicals that are found as ingredients or residues directly in products can be dominated by the product use stage. Finally, methodological challenges in LCA studies in relation to chemicals are discussed including the choice of functional unit, defining the system boundaries, quantifying emissions for many thousands of marketed chemicals, characterising emissions in terms of toxicity and other impacts, and finally interpreting LCA results. The chapter is relevant for LCA students and practitioners who wish to gain basic understanding of LCA studies of products or processes with chemicals as a key aspect.