Lattice modeling of aggregate interlocking in concrete

Publication: Research - peer-reviewJournal article – Annual report year: 2012

View graph of relations

In this paper, we study amixed-mode fracture process using a conventional two dimensional lattice model with incorporated meso-level internal material structure. Simple elasto-brittle elements of the network are divided into three phases according to a projected grain layout. The stiffness of any element that fulfils a failure criterion is removed. As a new feature of the otherwise standard lattice approach, we added the recovery of normal stiffness when a severed element enters the compressive regime. This enhancement enables capture of the shear resistance of an existing crack caused by crack roughness, i.e.what is termed aggregate interlocking. We demonstrate this enhancement via the simulation of mixed-mode experiments on concrete performed at a laboratory at the Technical University of Denmark. Double notched concrete specimens were initially pre-cracked in tension. Then, various combinations of tensile and shear load (normal and tangential to the crack plane) were applied. Simulated crack patterns and load–displacement curves are compared to the experimental observations.
Original languageEnglish
JournalInternational Journal of Fracture
Issue number1
Pages (from-to)1
Number of pages11
StatePublished - 2012
CitationsWeb of Science® Times Cited: 15


  • Lattice model, Elasto-brittle elements, Non-proportional load-path, Stiffness recovery, Aggregate interlocking
Download as:
Download as PDF
Select render style:
Download as HTML
Select render style:
Download as Word
Select render style:

ID: 9710007