Late quaternary OSL chronologies from the Qinghai Lake (NE Tibetan Plateau): Intercomparison of quartz and K-feldspar ages to assess the pre-depositional bleaching

Signal resetting prior to deposition is an important factor for the accuracy of luminescence dating. In this study, resetting of the quartz optically stimulated luminescence (OSL) signal from samples collected from different depositional environments (alluvial, beach, and aeolian sediments) around the Qinghai Lake basin (northeastern Tibetan Plateau) was examined using its inter-comparison with post-IR infrared stimulated luminescence (IRSL) measured at 290 °C (pIRIR₂₉₀) from K-feldspar. Dose recovery tests were carried out to test the success of the single aliquot regenerative-dose (SAR) protocol for quartz and feldspar. Additionally, stability tests (first IR temperature plateau and g-values) were performed for the pIRIR₂₉₀. We observe that most of the K-feldspar pIRIR₂₉₀ and quartz OSL ages are consistent with each other (within 10%), suggesting that the quartz OSL signal was well-bleached prior to the deposition. The ages of loess samples range between ∼13.1 and ∼1.5 ka, the alluvial sediments between ∼35 ka and ∼14 ka, and beach sediments between 60 and 50 ka, corresponding to early Marine Isotope Stage (MIS) 3. These quartz OSL chronologies suggest a lake highstand during very early MIS 3, a lowstand during late MIS 3 and MIS 2, and widespread loess accumulation through the Holocene in the Qinghai Lake basin.

General information
State: Published
Organisations: Center for Nuclear Technologies, Radiation Physics, Chinese Academy of Sciences, Leibniz Institute for Applied Geophysics, Aarhus University
Contributors: Long, H., Tsukamoto, S., Buylaert, J., Murray, A. S., Jain, M., Frechen, M.
Pages: 159-164
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Quaternary Geochronology
Volume: 49
ISSN (Print): 1871-1014
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.17 SJR 1.972 SNIP 1.287
Web of Science (2017): Impact factor 3.44
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.3 SJR 1.738 SNIP 0.984
Web of Science (2016): Impact factor 2.46
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.22 SJR 2.158 SNIP 1.367
Web of Science (2015): Impact factor 3.142
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.86 SJR 1.953 SNIP 1.218
Web of Science (2014): Impact factor 2.687
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.89 SJR 2.512 SNIP 1.344
Web of Science (2013): Impact factor 2.476
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1