Late effects of early exposures to endocrine disrupting chemicals in rats - DTU Orbit
(27/12/2018)

Late effects of early exposures to endocrine disrupting chemicals in rats

Endocrine disrupting compounds may interfere with tissues at critical developmental stages and give rise to cancer later in life. This talk will focus on early-life exposure to endocrine disrupting chemicals which is associated with increased risk for carcinogenesis in mammary and prostate glands in experimental models. On the other hand, some naturally occurring endocrine disruptors (phyto-estrogens) have been proposed as protective against mammary cancer. Our recent rat studies showed an increased prevalence of intraductal hyperplasia of mammary glands after perinatal exposure to estrogenic chemicals, and this was associated with early changes in pre-pubertal mammary development. In the prostate, we observed a shift from the general age-related atrophy towards hyperplasia in aging rats that had been exposed perinatally to a mixture of human relevant anti-androgenic chemicals. This causes concern that human perinatal exposure to environmental chemicals may increase the risk of prostate or mammary cancer later in life. Possible modes of action and the human relevance of these findings will be discussed.

General information
State: Published
Organisations: National Food Institute, Research group for Molecular and Reproductive Toxicology
Contributors: Boberg, J., Hass, U.
Pages: S9-S9
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Toxicology Letters
Volume: 280
Article number: S01-03
ISSN (Print): 0378-4274
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.41 SJR 1.103 SNIP 1.025
Web of Science (2017): Impact factor 3.166
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.83 SJR 1.302 SNIP 1.201
Web of Science (2016): Impact factor 3.858
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.62 SJR 1.281 SNIP 1.117
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.45 SJR 1.142 SNIP 1.154
Web of Science (2014): Impact factor 3.262
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.56 SJR 1.11 SNIP 1.199
Web of Science (2013): Impact factor 3.355
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.41 SJR 1.072 SNIP 1.148
Web of Science (2012): Impact factor 3.145
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.38 SJR 1.133 SNIP 1.157
Web of Science (2011): Impact factor 3.23
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.233 SNIP 1.15
Web of Science (2010): Impact factor 3.581
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.09 SNIP 1.202
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.02 SNIP 1.053
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.951 SNIP 1.211
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.018 SNIP 1.277
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.006 SNIP 1.109
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.007 SNIP 1.13
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.806 SNIP 0.949
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.6 SNIP 0.91
Scopus rating (2001): SJR 0.625 SNIP 0.734
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.336 SNIP 0.582
Scopus rating (1999): SJR 0.346 SNIP 0.511
Original language: English
Keywords: TOXICOLOGY
DOIs:
10.1016/j.toxlet.2017.07.219
Source: FindIt
Source-ID: 2392725387
Research output: Research - peer-review › Conference abstract in journal – Annual report year: 2018