Laser Rate Equation Based Filtering for Carrier Recovery in Characterization and Communication - DTU Orbit (01/01/2019)

Laser Rate Equation Based Filtering for Carrier Recovery in Characterization and Communication

We formulate a semiconductor laser rate equation based approach to carrier recovery in a Bayesian filtering framework. Filter stability and the effect of model inaccuracies (unknown or un-useable rate equation coefficients) are discussed. Two potential application areas are explored: laser characterization and carrier recovery in coherent communication. Two rate equation based Bayesian filters, the particle filter and extended Kalman filter, are used in conjunction with a coherent receiver to measure frequency noise spectrum of a photonic crystal cavity laser with less than 20 nW of fiber-coupled output power. The extended Kalman filter is also used to recover a 28 Gbd DP-16 QAM signal where a decision-directed phase-locked loop fails.

General information
State: Published
Organisations: Department of Photonics Engineering, High-Speed Optical Communication, Nanophotonics Theory and Signal Processing, Metro-Access and Short Range Systems, Helmut Schmidt Universität, KTH - Royal Institute of Technology, RISE ICT
Pages: 3271-3279
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Journal of Lightwave Technology
Volume: 33
Issue number: 15
ISSN (Print): 0733-8724
Ratings:
 BFI (2018): BFI-level 2
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 2
 Scopus rating (2017): CiteScore 4.42 SJR 1.166 SNIP 1.791
 Web of Science (2017): Impact factor 3.652
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 2
 Scopus rating (2016): CiteScore 3.87 SJR 1.23 SNIP 1.819
 Web of Science (2016): Impact factor 3.671
 Web of Science (2016): Indexed yes
 BFI (2015): BFI-level 2
 Scopus rating (2015): CiteScore 4.15 SJR 1.598 SNIP 1.901
 Web of Science (2015): Impact factor 2.567
 Web of Science (2015): Indexed yes
 BFI (2014): BFI-level 2
 Scopus rating (2014): CiteScore 4.23 SJR 1.737 SNIP 2.411
 Web of Science (2014): Impact factor 2.965
 Web of Science (2014): Indexed yes
 BFI (2013): BFI-level 2
 Scopus rating (2013): CiteScore 4.03 SJR 1.622 SNIP 2.439
 Web of Science (2013): Impact factor 2.862
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
 BFI (2012): BFI-level 2
 Scopus rating (2012): CiteScore 3.21 SJR 1.888 SNIP 2.491
 Web of Science (2012): Impact factor 2.555
 ISI indexed (2012): ISI indexed yes
 Web of Science (2012): Indexed yes
 BFI (2011): BFI-level 2
 Scopus rating (2011): CiteScore 3.2 SJR 1.733 SNIP 2.957