Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4 - DTU Orbit (06/11/2018)

Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4

Electricity storage is needed on an unprecedented scale to sustain the ongoing transition of electricity generation from fossil fuels to intermittent renewable energy sources like wind and solar power. Today pumped hydro is the only commercially viable large-scale electricity storage technology, but unfortunately it is limited to mountainous regions and therefore difficult to expand. Emerging technologies like adiabatic compressed air energy storage (ACAES) or storage using conventional power-to-gas (P2G) technology combined with underground gas storage can be more widely deployed, but unfortunately for long-term to seasonal periods these technologies are either very expensive or provide a very low round-trip efficiency. Here we describe a novel storage method combining recent advances in reversible solid oxide electrochemical cells with sub-surface storage of CO2 and CH4, thereby enabling large-scale electricity storage with a round-trip efficiency exceeding 70% and an estimated storage cost around 3 b/kW\(^{-1}\)h\(^{-1}\), i.e., comparable to pumped hydro and much better than previously proposed technologies.

General information
- **State:** Published
- **Organisations:** Department of Energy Conversion and Storage, Applied Electrochemistry, Fundamental Electrochemistry, Colorado School of Mines, Northwestern University
- **Contributors:** Jensen, S. H., Graves, C. R., Mogensen, M. B., Wendel, C., Braun, R. J., Hughes, G., Gao, Z., Barnett, S. A.
- **Number of pages:** 9
- **Pages:** 2471-2479
- **Publication date:** 2015
- **Peer-reviewed:** Yes

Publication information
- **Journal:** Energy & Environmental Science
- **Volume:** 8
- **ISSN (Print):** 1754-5692
- **Ratings:**
 - BFI (2018): BFI-level 2
 - Web of Science (2018): Indexed yes
 - BFI (2017): BFI-level 2
 - Scopus rating (2017): CiteScore 30.87 SJR 14.59 SNIP 4.819
 - Web of Science (2017): Impact factor 30.067
 - Web of Science (2017): Indexed yes
 - BFI (2016): BFI-level 2
 - Scopus rating (2016): CiteScore 26.39 SJR 12.283 SNIP 4.325
 - Web of Science (2016): Impact factor 29.518
 - Web of Science (2016): Indexed yes
 - BFI (2015): BFI-level 2
 - Web of Science (2015): Indexed yes
 - BFI (2014): BFI-level 2
 - Scopus rating (2014): CiteScore 19.28 SJR 7.769 SNIP 4.001
 - Web of Science (2014): Indexed yes
 - BFI (2013): BFI-level 1
 - Scopus rating (2013): CiteScore 14.81 SJR 6.019 SNIP 2.996
 - Web of Science (2013): Impact factor 15.49
 - ISI indexed (2013): ISI indexed yes
 - Web of Science (2013): Indexed yes
 - BFI (2012): BFI-level 1
 - Scopus rating (2012): CiteScore 11.84 SJR 5.868 SNIP 2.599
 - Web of Science (2012): Impact factor 11.653
 - ISI indexed (2012): ISI indexed yes
 - Web of Science (2012): Indexed yes
 - BFI (2011): BFI-level 1