Protection of steel structures, using so-called intumescent coatings, is an efficient and space saving way to prolong the time before a building, with load bearing steel constructions, collapses in the event of a fire. In addition to the intumescent coating, application of a primer may be required, either to ensure adhesion of the intumescent coating to the steel or to provide corrosion resistance. It is essential to document the performance of the intumescent coating together with the primer to ensure the overall quality of coating system. In the present work, two epoxy primers were used to investigate the potential failure mechanism of a primer applied prior to an intumescent coating. The analysis was carried out using; (1) gas-fired test furnace, (2) a specially designed electrically heated oven, and (3) thermo gravimetric analysis. When tested below an acrylic intumescent coating, exposed to a gas-fired furnace following the ISO834 fire curve (a so-called cellulose fire), one of the primers selected performed well and the other poorly. From tests in the electrically heated oven, it was found that both primers were sensitive to the film thickness employed and the presence of oxygen. At oxygen-rich conditions, higher primer thicknesses gave weaker performance. In addition, a color change from red to black was observed in nitrogen, while the color remained red in the oxygen-nitrogen mixture. In summary, the results suggest that an adequate choice of primer, primer thickness, and intumescent coating is essential for a good performance of an intumescent coating system. (C) 2014 Elsevier B.V. All rights reserved.

General information
Publication status: Published
Organisations: Department of Chemical and Biochemical Engineering, CHEC Research Centre, Hempel A/S
Contributors: Nørgaard, K. P., Dam-Johansen, K., Catala, P., Kiil, S.
Pages: 1577-1584
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Progress in Organic Coatings
Volume: 77
Issue number: 10
ISSN (Print): 0300-9440
Ratings:
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.8 SJR 1.006 SNIP 1.578
Web of Science (2014): Impact factor 2.358
Web of Science (2014): Indexed yes
Original language: English
Keywords: CHEMISTRY, MATERIALS, FLAME-RETARDANT COATINGS, AMMONIUM POLYPHOSPHATE, INORGANIC FILLERS, MECHANISM, POLYMERS, PROTECTION, RESISTANCE, SYSTEM, BEHAVIOR, Fire safety, Coating compatibility, Intumescent primer, GAS furnaces
DOIs:
10.1016/j.porgcoat.2013.10.018
Source: FindIt
Source-ID: 260934119
Research output: Contribution to journal › Journal article – Annual report year: 2014 › Research › peer-review