Lab-on-a-disc agglutination assay for protein detection by optomagnetic readout and optical imaging using nano- and micro-sized magnetic beads

We present a biosensing platform for the detection of proteins based on agglutination of aptamer coated magnetic nano- or microbeads. The assay, from sample to answer, is integrated on an automated, low-cost microfluidic disc platform. This ensures fast and reliable results due to a minimum of manual steps involved. The detection of the target protein was achieved in two ways: (1) optomagnetic readout using magnetic nanobeads (MNBs); (2) optical imaging using magnetic microbeads (MMBs). The optomagnetic readout of agglutination is based on optical measurement of the dynamics of MNB aggregates whereas the imaging method is based on direct visualization and quantification of the average size of MMB aggregates. By enhancing magnetic particle agglutination via application of strong magnetic field pulses, we obtained identical limits of detection of 25 pM with the same sample-to-answer time (15 min 30 s) using the two differently sized beads for the two detection methods. In both cases a sample volume of only 10 μl is required. The demonstrated automation, low sample-to-answer time and portability of both detection instruments as well as integration of the assay on a low-cost disc are important steps for the implementation of these as portable tools in an out-of-lab setting.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Nanoprobes, Magnetic Systems, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, BluSense Diagnostics IVS
Contributors: Uddin, R., Burger, R., Donolato, M., Fock, J., Creagh, M., Hansen, M. F., Boisen, A.
Number of pages: 7
Pages: 351-357
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Biosensors and Bioelectronics
Volume: 85
ISSN (Print): 0956-5663
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 7.83 SJR 2.373 SNIP 1.65
Web of Science (2017): Impact factor 8.173
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 7.22 SJR 2.095 SNIP 1.619
Web of Science (2016): Impact factor 7.78
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 7.07 SJR 2.044 SNIP 1.671
Web of Science (2015): Impact factor 7.476
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 6.57 SJR 2.057 SNIP 1.716
Web of Science (2014): Impact factor 6.409
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 6.34 SJR 2.029 SNIP 1.726
Web of Science (2013): Impact factor 6.451
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 5.7 SJR 2.397 SNIP 1.592
Web of Science (2012): Impact factor 5.437
ISI indexed (2012): ISI indexed yes