Klinefelter syndrome comorbidities linked to increased X chromosome gene dosage and altered protein interactome activity - DTU Orbit (19/01/2019)

Klinefelter syndrome comorbidities linked to increased X chromosome gene dosage and altered protein interactome activity

Klinefelter syndrome (KS) (47,XXY) is the most common male sex chromosome aneuploidy. Diagnosis and clinical supervision remain a challenge due to varying phenotypic presentation and insufficient characterization of the syndrome. Here we combine health data-driven epidemiology and molecular level systems biology to improve the understanding of KS and the molecular interplay influencing its comorbidities. In total, 78 overrepresented KS comorbidities were identified using in- and out-patient registry data from the entire Danish population covering 6.8 million individuals. The comorbidities extracted included both clinically well-known (e.g. infertility and osteoporosis) and still less established KS comorbidities (e.g. pituitary gland hypofunction and dental caries). Several systems biology approaches were applied to identify key molecular players underlying KS comorbidities: Identification of co-expressed modules as well as central hubs and gene dosage perturbed protein complexes in a KS comorbidity network build from known disease proteins and their protein-protein interactions. The systems biology approaches together pointed to novel aspects of KS disease phenotypes including perturbed Jak-STAT pathway, dysregulated genes important for disturbed immune system (IL4), energy balance (POMC and LEP) and erythropoietin signalling in KS. We present an extended epidemiological study that links KS comorbidities to the molecular level and identify potential causal players in the disease biology underlying the identified comorbidities.

General information

State: Published
Organisations: Department of Biotechnology and Biomedicine, DTU Multi Assay Core, University of Copenhagen
Contributors: Belling, K. G., Russo, F., Jensen, A. B., Daigaard, M. D., Westergaard, D., Rajpert-De Meyts, E., Skakkebæk, N. E., Juul, A. C., Brunak, S.
Number of pages: 11
Pages: 1219-1229
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Human Molecular Genetics
Volume: 26
Issue number: 7
ISSN (Print): 0964-6906
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.31 SJR 3.555 SNIP 1.226
Web of Science (2017): Impact factor 4.902
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.16 SJR 3.698 SNIP 1.241
Web of Science (2016): Impact factor 5.34
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 5.96 SJR 4.308 SNIP 1.395
Web of Science (2015): Impact factor 5.985
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 6.54 SJR 4.568 SNIP 1.492
Web of Science (2014): Impact factor 6.393
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 7.42 SJR 5.048 SNIP 1.577
Web of Science (2013): Impact factor 6.677
ISI indexed (2013): ISI indexed yes