Kinetics based reaction optimization of enzyme catalysed reduction of formaldehyde to methanol with synchronous cofactor regeneration - DTU Orbit (23/12/2018)

Kinetics based reaction optimization of enzyme catalysed reduction of formaldehyde to methanol with synchronous cofactor regeneration

Enzymatic reduction of carbon dioxide (CO₂) to methanol (CH₃OH) can be accomplished using a designed set-up of three oxidoreductases utilizing reduced pyridine nucleotide (NADH) as cofactor for the reducing equivalents electron supply. For this enzyme system to function efficiently a balanced regeneration of the reducing equivalents during reaction is required. Herein, we report the optimization of the enzymatic conversion of formaldehyde (CHOH) to CH₃OH by alcohol dehydrogenase, the final step of the enzymatic redox reaction of CO₂ to CH₃OH, with kinetically synchronous enzymatic cofactor regeneration using either glucose dehydrogenase (System I) or xylose dehydrogenase (System II). A mathematical model of the enzyme kinetics was employed to identify the best reaction set-up for attaining optimal cofactor recycling rate and enzyme utilization efficiency. Targeted process optimization experiments were conducted to verify the kinetically modelled results. Repetitive reaction cycles were shown to enhance the yield of CH₃OH, increase the total turnover number (TTN) and the biocatalytic productivity rate (BPR) value for both system I and II whilst minimizing the exposure of the enzymes to high concentrations of CHOH. System II was found to be superior to System I with a yield of 8 mM CH₃OH, a TTN of 160 and BPR of 24 μmol CH₃OH/U·h during 6 hours of reaction. The study demonstrates that an optimal reaction set-up could be designed from rational kinetics modelling to maximize the yield of CH₃OH, whilst simultaneously optimizing cofactor recycling and enzyme utilization efficiency. This article is protected by copyright. All rights reserved.

General information

State: Published
Organisations: Department of Chemical and Biochemical Engineering, Center for BioProcess Engineering, CHEC Research Centre
Contributors: Marpani, F. B., Sárossy, Z., Pinelo, M., Meyer, A. S.
Pages: 2762-2770
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Biotechnology and Bioengineering
Volume: 114
Issue number: 12
ISSN (Print): 0006-3592
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.07 SJR 1.372 SNIP 1.186
Web of Science (2017): Impact factor 3.952
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.14 SJR 1.447 SNIP 1.178
Web of Science (2016): Impact factor 4.481
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.44 SJR 1.632 SNIP 1.355
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.16 SJR 1.612 SNIP 1.395
Web of Science (2014): Impact factor 4.126
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.44 SJR 1.637 SNIP 1.427
Web of Science (2013): Impact factor 4.164
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.04 SJR 1.62 SNIP 1.364
Web of Science (2012): Impact factor 3.648
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4.08 SJR 1.668 SNIP 1.481
Web of Science (2011): Impact factor 3.946
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.551 SNIP 1.354
Web of Science (2010): Impact factor 3.7
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.498 SNIP 1.358
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.248 SNIP 1.283
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.363 SNIP 1.356
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.467 SNIP 1.437
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.135 SNIP 1.23
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.105 SNIP 1.245
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.052 SNIP 1.228
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.117 SNIP 1.263
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.059 SNIP 1.16
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.428 SNIP 1.529
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.494 SNIP 1.531
Original language: English
Keywords: Cofactors, Enzyme catalysis, Kinetics, Regeneration, glucose dehydrogenase, xylose dehydrogenase
Electronic versions:
Marpani_et_al_2017_Biotechnology_and_Bioengineering.pdf. Embargo ended: 24/08/2018
DOIs:
10.1002/bit.26405
Source: FindIt
Source-ID: 2373296132
Research output: Research - peer-review › Journal article – Annual report year: 2017