Kinetic Modeling of Texture and Color Changes During Thermal Treatment of Chicken Breast Meat

Research output: Research - peer-reviewJournal article – Annual report year: 2018

View graph of relations

Heat treatment is commonly applied as a primary method for ensuring the microbial safety of poultry meat and to enhance its palatability. Although texture and color of cooked chicken breast meat are important quality parameters for the consumers that need to be controlled during thermal processing, studies assessing the temperature-time-dependent quality changes during thermal treatment are lacking. This work aims to investigate the texture and color changes of chicken breast meat during thermal processing and to develop kinetic models that describe these changes. We studied the storage modulus changes of chicken breast meat as function of temperature. The storage modulus increases from 55 °C until leveling off in an equilibrium value above 80 °C, which was attributed to microstructure changes and described with a sigmoidal function. The changes in the texture (TPA) and color (CIE L*a*b*) of chicken breast meat were measured as function of temperature and time. The texture and color parameters show a rise with heating time until reaching an equilibrium value, while the rate of change increased with temperature. Kinetic models that take the non-zero equilibrium into account were developed to describe the color (lightness) and texture (hardness, gumminess, and chewiness) changes with heating time and temperature. The kinetic models provide a deeper insight into the mechanisms of texture and color changes during thermal treatment. They can be used to predict the texture and color development of chicken breast meat during thermal processing and, thus, help to optimize the process.

Original languageEnglish
JournalFood and Bioprocess Technology
Volume11
Issue number8
Pages (from-to)1495–1504
ISSN1935-5130
DOIs
StatePublished - 1 Jun 2018
CitationsWeb of Science® Times Cited: 0

    Research areas

  • Poultry meat, Quality changes, Rate law, Storage modulus, Texture profile analyses (TPA), Thermal processing
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 149276393