Kerma conversion factors for modern glass buildings in radioactively contaminated areas - DTU Orbit (15/05/2019)

Kerma conversion factors for modern glass buildings in radioactively contaminated areas
To improve the estimation of external gamma irradiation from deposited radioactivity in urban environments a model of a modern office or residential building with glass facades was set up with eleven different building heights. Kerma conversion factors for the floors inside the building from contamination on different types of surfaces were determined by using the Monte Carlo code MCNP6 for the primary gamma energies 0.3, 0.662 and 3.0 MeV and for three different environmental scenarios. The kerma conversion factors were expressed as formulas for each possible deposition area for contaminants. The importance of the determined factors was shown by comparing them to previously generally used factors for multistorey house blocks.

General information
Publication status: Published
Organisations: Center for Nuclear Technologies, The Hevesy Laboratory, Radioecology and Tracer Studies
Contributors: Hinrichsen, Y., Andersson, K. G.
Pages: 161-175
Publication date: 2019
Peer-reviewed: Yes

Publication Information
Journal: Journal of Radiological Protection
Volume: 39
Issue number: 1
ISSN (Print): 0952-4746
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
Original language: English
Keywords: Kerma conversion factors, Monte Carlo simulations, Modern glass buildings
DOIs:
10.1088/1361-6498/aa6fca
Source: FindIt
Source-ID: 2442252866
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review