Isolation of IL-12p70-competent human monocyte-derived dendritic cells - DTU Orbit (28/12/2018)

Isolation of IL-12p70-competent human monocyte-derived dendritic cells

Diverse methodologies ranging from experimental immunological studies to immunotherapy involve the application of human monocyte-derived dendritic cells (moDCs). Considerable donor-dependent variations in the moDC production of IL-12p70 affect the outcome of these methodologies. It has been shown that moDCs generated under standard conditions develop into two subsets based on CD1a-expression with the CD1a+ moDCs being the main IL-12p70 producers. This has however not been generally accepted, which we show here because the subset described as CD1a-negative does express CD1a, but at a lower level than the other subset. We further characterize the phenotype of these two subsets, showing that the CD1a-hi subset has a greater immunogenic phenotype, making this subset more suitable for immunotherapy. The two subsets have previously been separated by cell sorting, but as this technique is not available to many laboratories and has incompatibility with clinical settings, a more widely useable technique is warranted. Therefore we tested if magnetic-activated cell sorting is useful for the purpose, and show that it is possible to isolate IL-12p70-competent CD1a-hi moDCs to a

General information
State: Published
Organisations: Department of Systems Biology, Center for Biological Sequence Analysis
Contributors: Søndergaard, J. N., Pedersen, S. B.
Pages: 112-116
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Journal of Immunological Methods
Volume: 386
Issue number: 1-2
ISSN (Print): 0022-1759
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.25 SJR 1.289 SNIP 0.715
Web of Science (2017): Impact factor 2.19
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.92 SJR 1.089 SNIP 0.65
Web of Science (2016): Impact factor 2.1
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.07 SJR 1.064 SNIP 0.739
Web of Science (2015): Impact factor 1.858
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.99 SJR 1.018 SNIP 0.824
Web of Science (2014): Impact factor 1.82
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.31 SJR 1.087 SNIP 0.834
Web of Science (2013): Impact factor 2.005
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.49 SJR 1.181 SNIP 0.934
Web of Science (2012): Impact factor 2.225
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.4 SJR 1.18 SNIP 0.888
Web of Science (2011): Impact factor 2.203
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.097 SNIP 0.858
Web of Science (2010): Impact factor 2.34
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.197 SNIP 0.893
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.035 SNIP 0.769
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.044 SNIP 0.873
Scopus rating (2006): SJR 1.297 SNIP 0.966
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.331 SNIP 0.972
Scopus rating (2004): SJR 1.193 SNIP 0.989
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.298 SNIP 1.005
Scopus rating (2002): SJR 1.283 SNIP 0.948
Scopus rating (2001): SJR 0.974 SNIP 0.767
Scopus rating (2000): SJR 1.092 SNIP 0.975
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.043 SNIP 0.904
Original language: English
Keywords: Dendritic cells, Monocytes, CD1a, IL-12p70
DOIs:
10.1016/j.jim.2012.09.005
Source: dtu
Source-ID: n:oat:DTIC-ART:elsevier/371686340::20287
Research output: Research - peer-review › Journal article – Annual report year: 2012