Isolation, Characterization, and Selection of Molds Associated to Fermented Black Table Olives

Table olives are one of the most important fermented food in the Mediterranean countries. Apart from lactic acid bacteria and yeasts that mainly conduct the olive fermentation, molds can develop on the brine surface, and can have either deleterious or useful effects on this process. From the food safety point of view, occurring molds could also produce mycotoxins, so, it is important to monitor and control them. In this respect, identification of molds associated to two Italian and two Greek fermented black table olives cultivars, was carried out. Sixty strains were isolated and molecularly identified as *Penicillium crustosum* (21), *P. roqueforti* (29), *P. paneum* (1), *P. expansum* (6), *P. polonicum* (2), *P. commune* (1). A group of 20 selected isolates was subjected to technological (beta-glucosidase, cellulolytic, ligninolytic, pectolytic, and xylanolytic activities; proteolytic enzymes) and safety (biogenic amines and secondary metabolites, including mycotoxins) characterization. Combining both technological (presence of desired and absence of undesired enzymatic activities) and safety aspects (no or low production of biogenic amines and regulated mycotoxins), it was possible to select six strains with biotechnological interest. These are putative candidates for future studies as autochthonous co-starters with yeasts and lactic acid bacteria for black table olive production.

General information

State: Published
Organisations: Department of Biotechnology and Biomedicine, Fungal Chemodiversity, Istituto di Scienze delle Produzioni Alimentari, University of Ioannina
Contributors: Bavaro, S. L., Susca, A., Frisvad, J. C., Tufariello, M., Chytiri, A., Perrone, G., Mita, G., Logrieco, A. F., Bleve, G.
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Frontiers in Microbiology
Volume: 8
Article number: 1356
ISSN (Print): 1664-302X
Ratings:
- BFI (2018): BFI-level 1
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Scopus rating (2017): CiteScore 4.19 SJR 1.699 SNIP 1.174
- Web of Science (2017): Impact factor 4.019
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 4.16 SJR 1.759 SNIP 1.161
- Web of Science (2016): Impact factor 4.076
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 1
- Scopus rating (2015): CiteScore 4.15 SJR 1.869 SNIP 1.193
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 1
- Scopus rating (2014): CiteScore 3.76 SJR 1.879 SNIP 1.148
- Web of Science (2014): Impact factor 3.989
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 1
- Scopus rating (2013): CiteScore 3.56 SJR 1.776 SNIP 0.949
- Web of Science (2013): Impact factor 3.941
- ISI indexed (2013): ISI indexed no
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 1
- Scopus rating (2012): CiteScore 2.78 SJR 1.46 SNIP 0.722
- ISI indexed (2012): ISI indexed no
- Scopus rating (2011): SJR 0.642 SNIP 0.192
Web of Science (2011): Indexed yes
Original language: English
Keywords: Table olives, Fermentation, Molds, Starter, Mycotoxins
Electronic versions:
fmicb_08_01356.pdf
DOIs:
10.3389/fmicb.2017.01356

Bibliographical note
This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Source: FindIt
Source-ID: 2372750802
Research output: Research - peer-review | Journal article – Annual report year: 2017