Isoenergetic modification of whey protein structure by denaturation and crosslinking using transglutaminase

Transglutaminase (TG) catalyzes formation of covalent bonds between lysine and glutamine side chains and has applications in manipulation of food structure. Physical properties of a whey protein mixture (SPC) denatured either at elevated pH or by heat-treatment and followed by TG catalyzed crosslinking, have been characterised using dynamic light scattering, size exclusion chromatography, fluorescence spectroscopy and atomic force microscopy. The degree of enzymatic crosslinking appeared higher for pH- than for heat-denatured SPC. The hydrophobic surface properties depended on the treatment, thus heating caused the largest exposure of the hydrophobic core of SPC proteins, which was decreased by crosslinking. The particle size of the treated SPC samples increased upon crosslinking by TG. Moreover, the particle morphology depended on the type of denaturing treatment, thus heat-treated SPC contained fibrillar structures, while pH-denatured SPC remained globular as documented by using atomic force microscopy. Finally, the in vitro digestability of the different SPC samples was assessed under simulated gastric and intestinal conditions. Notably heat-treatment was found to lower the gastric digestion rate and enzymatic crosslinking reduced both the gastric and the intestinal rate of digestion. These characteristics of the various SPC samples provide a useful basis for design of isoenergetic model foods applicable in animal and human studies on how food structure affects satiety.

General information
State: Published
Organisations: Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Department of Micro- and Nanotechnology, Amphiphilic Polymers in Biological Sensing, University of Leeds, University of Copenhagen
Number of pages: 9
Pages: 797-805
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Food & Function
Volume: 9
Issue number: 2
ISSN (Print): 2042-6496
Ratings:
BFI (2019): BFI-level 1
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
BFI (2016): BFI-level 1
BFI (2015): BFI-level 1
Original language: English
DOIs:
10.1039/c7fo01451a
Source: FindIt
Source-ID: 2395199018
Research output: Research - peer-review > Journal article – Annual report year: 2018