Is gill cortisol concentration a good acute stress indicator in fish? A study in rainbow trout and zebrafish

Cortisol is the main biomarker of physiological stress in fish. It is usually measured in plasma, which requires blood collection. Though cortisol is produced in the anterior kidney, it can diffuse easily through cell membranes due to its lipophilic nature. Taking advantage of that, some non-invasive techniques have been developed to measure cortisol directly in the water from fish-holding tanks, in skin mucus or in scales. In this study, we explored the possibility to analyze fish cortisol from gill filaments as a reliable acute stress marker. Our results show that gill cortisol levels correlate well with plasma cortisol levels in both rainbow trout and zebrafish exposed or not to an acute stress protocol. Measuring cortisol in gill filaments increases the available possibilities for stress assessment in fish. Although this approach should yet be tested for its use with other stressors, it has several advantages: In relatively large fish (i.e. above 30 g) gill cortisol levels could be measured in vivo. Sampling of gill biopsies is very fast and easy, and the procedure does not induce stress if properly performed, making it an ideal option for in vivo stress assessment. In small fish, the use of gill tissue to measure cortisol has important technical advantages with respect to the current methods using whole-body homogenates. Gill homogenates could be used directly for ELISA cortisol analysis, avoiding the need of tedious and expensive cortisol extraction protocols, and, since no organic solvent is required, contributing for a more environmentally friendly analysis. (C) 2015 Elsevier Inc. All rights reserved.

General information
State: Published
Organisations: National Institute of Aquatic Resources, Section for Aquaculture, University of Vigo
Contributors: Gesto, M., Hernandez, J., Lopez-Patino, M. A., Soengas, J. L., Miguez, J. M.
Pages: 65-69
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology
Volume: 188
ISSN (Print): 1095-6433
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.23 SJR 0.836 SNIP 0.932
Web of Science (2017): Impact factor 2.258
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.16 SJR 0.84 SNIP 0.891
Web of Science (2016): Impact factor 1.812
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.01 SJR 0.943 SNIP 0.944
Web of Science (2015): Impact factor 2.039
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.18 SJR 0.999 SNIP 0.951
Web of Science (2014): Impact factor 1.966
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.36 SJR 0.974 SNIP 1.043
Web of Science (2013): Impact factor 2.371
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.18 SJR 0.797 SNIP 1.048