Investigation of a 6-MSA Synthase Gene Cluster in Aspergillus aculeatus Reveals 6-MSA-derived Aculinic Acid, Aculins A-B and Epi-Aculin A - DTU Orbit (22/12/2018)

Investigation of a 6-MSA Synthase Gene Cluster in Aspergillus aculeatus Reveals 6-MSA-derived Aculinic Acid, Aculins A-B and Epi-Aculin A

Aspergillus aculeatus, a filamentous fungus belonging to the Aspergillus clade Nigri, is an industrial workhorse in enzyme production. Recently we reported a number of secondary metabolites from this fungus; however, its genetic potential for the production of secondary metabolites is vast. In this study we identified a 6-methylsalicylic acid (6-MSA) synthase from A. aculeatus, and verified its functionality by episomal expression in A. aculeatus and heterologous expression in A. nidulans. Feeding studies with fully 13C-labeled 6-MSA revealed that 6-MSA is incorporated into aculinic acid, which further incorporates into three compounds that we name aculins A and B, and epi-aculin A, described here for the first time. Based on NMR data and bioinformatic studies we propose the structures of the compounds as well as a biosynthetic pathway leading to formation of aculins from 6-MSA.

General information
State: Published
Organisations: Department of Systems Biology, Department of Chemistry, Organic Chemistry, Eucaryotic Molecular Cell Biology
Number of pages: 5
Pages: 2200-2204
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Chembiochem
Volume: 16
Issue number: 15
ISSN (Print): 1439-4227
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.64 SJR 1.407 SNIP 0.721
Web of Science (2017): Impact factor 2.774
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.64 SJR 1.283 SNIP 0.735
Web of Science (2016): Impact factor 2.847
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.77 SJR 1.268 SNIP 0.749
Web of Science (2015): Impact factor 2.85
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.88 SJR 1.392 SNIP 0.85
Web of Science (2014): Impact factor 3.088
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.15 SJR 1.634 SNIP 0.847
Web of Science (2013): Impact factor 3.06
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.49 SJR 1.874 SNIP 0.901
Web of Science (2012): Impact factor 3.74
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.59 SJR 1.921 SNIP 0.952
Web of Science (2011): Impact factor 3.944
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.981 SNIP 0.929
Web of Science (2010): Impact factor 3.945
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.928 SNIP 0.927
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.989 SNIP 0.867
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.048 SNIP 0.986
Scopus rating (2006): SJR 1.938 SNIP 0.956
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.877 SNIP 0.953
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.734 SNIP 1.026
Scopus rating (2003): SJR 1.662 SNIP 1.076
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 7.15 SNIP 1.347
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.887 SNIP 0.228
Original language: English
Keywords: Aspergillus, Biosynthesis, Methylsalicylic acid, Natural products, Polyketide, Terpene
DOIs: 10.1002/cbic.201500210
Source: FindIt
Source-ID: 2281667023
Research output: Research - peer-review; Journal article – Annual report year: 2015